变量之间的关系复习变量之间的关系、表达方法知识要点表示变量的三种方法:列表法、解析法(关系式法)、图象法◆要点1变量、自变量、因变量(1)在一变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量,常量和变量往往是相对的,相对于某个变化过程。(2)在一变化的过程中,主动发生变化的量,称为自变量,而因变量是随着自变量的变化而发生变化的量。例如小明出去旅行,路程S、速度V、时间T三个量中,速度V一定,路程S则随着时间T的变化而变化。则T为自变量,路程为因变量。◆要点2列表法与变量之间的关系(1)列表法是表示变量之间关系的方法之一,可表示因变量随自变量的变化而变化的情况。(2)从表格中获取信息,找出其中谁是自变量,谁是因变量。找自变量和因变量时,主动发生变化的是自变量,因变量随自变量的增大而增大或减小◆要点3用关系式表示变量之间的关系(1)用来表示自变量与因变量之间关系的数学式子,叫做关系式,是表示变量之间关系的方法之一。(2)写变化式子,实际上根据题意,找到等量关系,列方程,但关系式的写法又不同于方程,必须将因变量单独写在等号的左边。即实质是用含自变量的代数式表示因变量。(3)利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每一个确定的自变量的值,因变量都有一个确定的与之对应的值。◆要点4用图象法表示变量的关系(1)图象是刻画变量之间关系的又一重要方式,特点是非常直观。(2)通常用横轴(水平方向的数轴)上的点表示自变量,用纵轴(竖直方向的数轴)上的点表示因变量。(3)从图象中可以获取很多信息,关键是找准图象上的点对应的横轴和纵轴上的位置,才能准确获取信息。如利用图象求两个变量的对应值,由图象得关系式,进行简单计算,从图象上变量的变化规律进行预测,判断所給图象是否满足实际情景,所给变量之间的关系等。(4)对比看:速度—时间、路程—时间两图象★若图象表示的是速度与时间之间的关系,随时间的增加即从左向右,“上升的线段”①表示速度在增加;“水平线段”②表示速度不变,也就是做匀速运动,“下降的线段”③表示速度在减少。★若图像表示的是距离与时间之间的关系,“上升的线段”①表示物体匀速运动;“水平线段”②表示物体停止运动,“下降的线段”③表示物体反向运动。如图BL—01(1)、(2):易错易混点(1)在列表中,不能够通过表格中的数据全面得出两个变量之间的关系规律,易出现片面性错误;(2)有的变量是由不变量与变量之和组成的,在解题时易忽略不变部分(在个别问题中,一定条件下变量也可能成为不变量)而导致错误;BL—01典型例题【例1】果子成熟从树上落到地面,它落下的高度与经过的时间有如下的关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果果子经过2秒落到地上,那么请估计这果子开始落下时离地面的高度是多少米?相关题型:在弹性限度内,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如下表:所挂物体的质量/kg012345678弹簧的长度/cm1212.51313.51414.51515.516(1)弹簧不挂物体时的长度是多少?(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?请写出y与x之间的关系式。(3)如果此弹簧的最大挂重为25千克,您能够预测当挂重为14千克时,弹簧的长度是多少吗?【例2】一辆汽车正常行驶时每小时耗油8升,油箱现有52升汽油。(1)如果汽车行驶时间为t(时),那么油箱中所存油量Q(升)与t(时)的关系式是什么?(2)油箱中的油总共可供汽车行驶多少小时?(3)当t的值分别为1,2,3时,Q相应的值是多少?【例3】一个梯形,它的下底长比上底长长2cm,它的高为3cm,设它的上底长为xcm,它的面积为ycm2。(1)写出y与x之间的关系式,并指出哪个变量是自变量,哪个变量是因变量?(2)当x由5变到7时,y如何变化?(3)用表格表示当x从3变到10时(每次增加1),y的相应值;(4)当x每增加1时,y如何变化?并说明你的理由;(5)这个梯形的面积能等于9cm2吗?能等于2cm2吗?为什么?相关题型:长方形的长是20cm,当宽由小到大地变化时,长方形面积也随之变化。(1)在这个变化过程中,自变量是____________,因变量是___________。(2)如果长方形的宽为acm,面积为Scm2,则S与a之间的关系式为_________。(3)当a=15cm时,S是__________。(4)当面积S是280时,这时的宽a是______________。【例4】小丽和她的邻居小明一起离家步行上学。(1)小丽一开始就跑,跑累了便走着去,小明开始走着,当他快到学校时跑了起来,他们同时到达学校。图BL—02中,图________表示小丽的行程,图______表示小明的行程最好。(2)若小丽在上学的路上以固定的速度前进,如图BL—03中虚线所示,小明在上学的路上以小丽速度的2倍行进,小名的速度以实线表示,他们先后到达学校,则图______可以描述这种情况。BL—02相关题型:小明所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,如图BL—04中,哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用的时间t(分)之间的关系()【例5】某中学校长决定带领市级“三好学生”去北京旅游,甲旅行社承诺:“如果校长买全票一张,则学生可享受半价优惠”;乙旅行社承诺:“包括校长在内所有人按全票的6折优惠”,若全票价甲乙旅行社均为240元。(1)设学生为x,甲乙旅行社收费分别为y甲(元)和y乙(元),分别写出两个旅行社收费的关系式;(2)哪家旅行社收费更优惠?【例6】某移动通信公司开设了“全球通”和“金卡快捷通”两种业务,前者每月先缴30元月租费,每通话1分钟付费0.4元,后者不缴月租费,但每分钟付费0.6元,若某人的每月通话时间在200分钟左右,则他应选用哪种业务比较合算?并简明叙述理由。(思路1:直接计算200分钟应付的话费进行比较;思路2:先求出付费相同的通话时间,再看200分钟比这个时间多还是少。)参考答案例1:(1)时间与高度两个变量的关系;时间t是自变量,高度h为因变量。(2)关系式为h=5t2,当t=2时,h=20(米)。相关题1:(1)12cm;(2)y随着x的增大而增大;y=12+0.5x。(3)当x=14(kg)时,y=19(cm)例2:(1)Q=52-8t;(2)当Q=0时,t=6.5(小时)(3)当t=1,2,3时,Q=44,36,28(小时)例3:(1)y=3x+3,期中x为自变量,y为因变量;(2)当x由5变到7时,y由18变为24(cm2)(3).略(4)当x每增加1时,y增加3(cm2)。(5)令y=9,则x=2,可以等于9,令y=2,则x=-1/3,因为x表示的是线段,所以不能。例4:(1)C,E;(2)C相关题2:D例5:(1)y甲=240+120xy乙=240·60%(x+1)(2)令y甲=y乙,y甲<y乙,BL—03BL—04y甲>y乙,得:当x=5时,两家收费一样,当x>5时,甲比乙优惠,当x<5时,乙比甲优惠。例6:略(思路同例5)1.一棵树苗栽下去时高0.8m,以后10年内每年平均长高0.4m,x年后树高ym。(1)这个问题中,常量是_________,变量是_________;(2)这个问题中x值是________量,y值是_________量;(3)生长5年后树高_______m,生长了10年树高__________m;(4)请你写出y随x变化而变化的关系式_______________。2.长方形的长为acm,宽为6cm,则它的周长C与长a之间的关系为______。3.某种情况下,声音在空气中传播的速度y(m/s)与气温x(℃)之间存在如下关系:33153xy,(1)当气温x=15℃时,声音的速度y=________m/s;(2)当气温x=22℃时,某人看到烟花燃放5s后才听到声音响,则此人与燃放的烟花所在地相距________m。4.某人购进一批苹果到集贸市场零售,已知卖出的苹果数量x与售价y的关系如下表:数量x(kg)12345售价y(元)2+0.14+0.26+0.38+0.410+0.5则y与x的关系式为___________。5.如图BL—05,一个矩形推拉窗高1.5米,则活动窗扇的通风面积a(平方米)与拉开长度b(米)之间的关系式为__________。6.某电影院有1000个座位,门票每张3元可达客满,若每张票提高x元,将有200x张门票不能售出,提价后每场电影票房收入y元与提高的票价x元之间的关系是_______________。7.小亮早晨从家骑车到学校,先上坡后下坡,形成情况如图BL—06所示,若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是________分钟。BL—05BL—06BL—078.根据河道的剩水量Q(m3)与水泵抽水时间t(h)的关系图象如图BL—07,回答下列问题:(1)水泵抽水前,河道内有_________的水,水泵最多抽________小时;(2)水泵抽8小时后,河道剩水量为_________m3;(3)当河道剩水量为100m3时,水泵已抽水__________小时;(4)水泵平均每小时抽水_________m3。9.有一边长为2cm的正方形,若边长增加xcm,面积就增加y(cm2),则y=________。10.一杯开水10分钟后冷却下来,在这个变化过程中,自变量是_________,因变量是________。11.亮亮拿6元钱去邮局买面值为0.80元的邮票,买邮票所剩钱数y(元)与买邮票的枚数x(枚)的关系式为______________,最多可以买________枚。12.根据图BL—08所示的程序计算,若输入的x的值是23,则输出的结果是()A.27B.49C.23D.2913.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示。其中说法正确的是()A.①②③B.①②④C.①③⑤D.①②⑤14.中国工程院院士袁隆平研究的超级杂交水稻以单季亩产1138kg创世界纪录,农户王文清家有x亩地,今年晚稻改种超级杂交水稻,如果每亩产量达到1130kg,那么王文清家水稻的总产量y与x之间的关系为()A.y=1130xB.y=1138xC.y=(1138-1130)xD.y=(1130+1138)x15.托运行李p千克(p为整数)的费用为c元,已知托运第一个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用5角,则计算托运行李费用c的公式是()A.c=0.5pB.c=0.5p+1C.c=0.5p+1.5D.c=0.5p+216.在地球某地,温度T(℃)与高度d(m)的关系可近似地用15010dT来表示,则当高度d=900m时,温度T为()A.4℃B.3℃C.2℃D.1℃17.如图BL—09是某市5月1日至5月7日每天最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A.5月1日B.5月2日C.5月3日D.5月5日18.从山顶上滚到山脚下的一块石头,图BL—10中能大致描述速度v随时间t变化的图象是()BL—08BL—09BL—1019.某礼堂的座位排列呈弧形,横排座位按下列方式设置:则第n排有座位()个A.10n+4B.20+4nC.20+4(n-1)D.20+3(n-1)20.丽丽放学回家进门后觉得口渴,可家里没有凉开水,于是她用水壶接了水,放在炉子上烧开,烧开后又倒入水杯中晾凉后才喝到嘴里,如图BL—11中,可以近似地刻画出水的温度随时间的变化而变化的图象是()21.三峡工程在2003年6月1日至10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水