初等模型中国地质大学数学建模基地初等模型如果研究对象的机理比较简单,一般用静态、线性、确定性模型描述就能达到建模的目的时,我们基本上可以用初等数学的方法来构造和求解模型。通过下面的几个实例我们能够看到,用很简单的数学方法就可以解决一些有趣的实际问题。2第二章初等模型2.1舰艇的会合2.2公平的席位分配2.3双层玻璃窗的功效2.4汽车刹车距离2.5崖高的估算3某航空母舰派其护卫舰去搜寻其跳伞的飞行员,护卫舰找到飞行员后,航母通知它尽快返回与其汇合并通报了航母当前的航速与方向,问护卫舰应怎样航行,才能与航母汇合。§2.1舰艇的会合412,11222aabrbaah令:则上式可简记成:222rh-yx)(A(0,b)XYB(0,-b)P(x,y)O航母护卫舰θ1θ2])([)(22222b-yxabyx即:22222222)1(411ababaayx可化为:记v2/v1=a通常a1222|AP|a|BP|则汇合点p必位于此圆上。bxy)(tan1(护卫舰的路线方程)bxy)(tan2(航母的路线方程)即可求出P点的坐标和θ2的值。本模型虽简单,但分析极清晰且易于实际应用5§2.2公平的席位分配设有A、B两个单位,各有人数、个,现在要求按人数选出个代表召开一次代表会议。那么怎样分配这个席位呢?一般的方法是令:若恰好是两个整数,就以分别作为A,B两个单位的席位数,即可以获得一个完全合理的分配方案。当不是两个整数时,那么怎样分配才合理呢?下面我们就来讨论这个问题。QQ1P2Pqpppq212*2qpppq211*121,qq21,qq21,qq6公平的席位分配系别学生比例20席的分配人数(%)比例结果甲10351.5乙6331.5丙3417.0总和200100.020.02021席的分配比例结果10.8156.6153.57021.00021问题三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。现因学生转系,三系人数为103,63,34,问20席如何分配。若增加为21席,又如何分配。比例加惯例对丙系公平吗系别学生比例20席的分配人数(%)比例结果甲10351.510.3乙6331.56.3丙3417.03.4总和200100.020.020系别学生比例20席的分配人数(%)比例结果甲10351.510.310乙6331.56.36丙3417.03.44总和200100.020.02021席的分配比例结果10.815116.61573.570321.000217“公平”分配方法衡量公平分配的数量指标人数席位A方p1n1B方p2n2当p1/n1=p2/n2时,分配公平p1/n1–p2/n2~对A的绝对不公平度p1=150,n1=10,p1/n1=15p2=100,n2=10,p2/n2=10p1=1050,n1=10,p1/n1=105p2=1000,n2=10,p2/n2=100p1/n1–p2/n2=5但后者对A的不公平程度已大大降低!虽二者的绝对不公平度相同若p1/n1p2/n2,对不公平Ap1/n1–p2/n2=58公平分配方案应使rA,rB尽量小设A,B已分别有n1,n2席,若增加1席,问应分给A,还是B不妨设分配开始时p1/n1p2/n2,即对A不公平),(///21222211nnrnpnpnpA~对A的相对不公平度将绝对度量改为相对度量类似地定义rB(n1,n2)将一次性的席位分配转化为动态的席位分配,即“公平”分配方法若p1/n1p2/n2,定义91)若p1/(n1+1)p2/n2,则这席应给A2)若p1/(n1+1)p2/n2,3)若p1/n1p2/(n2+1),应计算rB(n1+1,n2)应计算rA(n1,n2+1)若rB(n1+1,n2)rA(n1,n2+1),则这席应给应讨论以下几种情况初始p1/n1p2/n2问:p1/n1p2/(n2+1)是否会出现?A否!若rB(n1+1,n2)rA(n1,n2+1),则这席应给B10当rB(n1+1,n2)rA(n1,n2+1),该席给ArA,rB的定义)1()1(11212222nnpnnp该席给A否则,该席给B,2,1,)1(2innpQiiii定义该席给Q值较大的一方推广到m方分配席位该席给Q值最大的一方Q值方法minnpQiiii,2,1,)1(2计算,11三系用Q值方法重新分配21个席位按人数比例的整数部分已将19席分配完毕甲系:p1=103,n1=10乙系:p2=63,n2=6丙系:p3=34,n3=3用Q值方法分配第20席和第21席第20席3.964334,5.947663,4.961110103232221QQQ第21席3221,,4.801211103QQQ同上Q3最大,第21席给丙系甲系11席,乙系6席,丙系4席Q值方法分配结果公平吗?Q1最大,第20席给甲系122d墙室内T1室外T2dd墙l室内T1室外T2问题双层玻璃窗与同样多材料的单层玻璃窗相比,减少多少热量损失假设热量传播只有传导,没有对流T1,T2不变,热传导过程处于稳态材料均匀,热传导系数为常数建模热传导定律dTkQQ1Q2Q~单位时间单位面积传导的热量T~温差,d~材料厚度,k~热传导系数2.3双层玻璃窗的功效13dd墙l室内T1室外T2Q1TaTb记双层玻璃窗传导的热量Q1Ta~内层玻璃的外侧温度Tb~外层玻璃的内侧温度k1~玻璃的热传导系数k2~空气的热传导系数dTTklTTkdTTkQbbaa212111dlhkkhssdTTkQ,,)2(212111建模14记单层玻璃窗传导的热量Q2dTTkQ221122d墙室内T1室外T2Q2双层与单层窗传导的热量之比dlhkkhssQQ,,22212121QQk1=410-3~810-3,k2=2.510-4,k1/k2=16~32对Q1比Q2的减少量作最保守的估计,取k1/k2=16dlhhQQ,18121)2(2111sdTTkQ建模15hQ1/Q24200.060.030.026模型应用取h=l/d=4,则Q1/Q2=0.03即双层玻璃窗与同样多材料的单层玻璃窗相比,可减少97%的热量损失。结果分析Q1/Q2所以如此小,是由于层间空气极低的热传导系数k2,而这要求空气非常干燥、不流通。房间通过天花板、墙壁……损失的热量更多。dlhhQQ,18121双层窗的功效不会如此之大162.4汽车刹车距离美国的某些司机培训课程中的驾驶规则:背景与问题•正常驾驶条件下,车速每增10英里/小时,后面与前车的距离应增一个车身的长度。•实现这个规则的简便办法是“2秒准则”:•后车司机从前车经过某一标志开始默数2秒钟后到达同一标志,而不管车速如何判断“2秒准则”与“车身”规则是否一样;建立数学模型,寻求更好的驾驶规则。17问题分析常识:刹车距离与车速有关10英里/小时(16公里/小时)车速下2秒钟行驶29英尺(9米)车身的平均长度15英尺(=4.6米)“2秒准则”与“10英里/小时加一车身”规则不同刹车距离反应时间司机状况制动系统灵活性制动器作用力、车重、车速、道路、气候……最大制动力与车质量成正比,使汽车作匀减速运动。车速常数反应距离制动距离常数18假设与建模1.刹车距离d等于反应距离d1与制动距离d2之和2.反应距离d1与车速v成正比3.刹车时使用最大制动力F,F作功等于汽车动能的改变;vtd11Fd2=mv2/2Fm21kvvtdt1为反应时间21ddd且F与车的质量m成正比22kvd19•反应时间t1的经验估计值为0.75秒参数估计•利用交通部门提供的一组实际数据拟合k21kvvtd模型最小二乘法k=0.06计算刹车距离、刹车时间车速(英里/小时)(英尺/秒)实际刹车距离(英尺)计算刹车距离(英尺)刹车时间(秒)2029.342(44)39.01.53044.073.5(78)76.61.84058.7116(124)126.22.15073.3173(186)187.82.56088.0248(268)261.43.070102.7343(372)347.13.680117.3464(506)444.84.320“2秒准则”应修正为“t秒准则”22106.075.0vvkvvtd模型车速(英里/小时)刹车时间(秒)201.5301.8402.1502.5603.0703.6804.3车速(英里/小时)0~1010~4040~6060~80t(秒)123421§2.5崖高的估算假如你站在崖顶且身上带着一只具有跑表功能的计算器,你也许会出于好奇心想用扔下一块石头听回声的方法来估计山崖的高度,假定你能准确地测定时间,你又怎样来推算山崖的高度呢,请你分析一下这一问题。我有一只具有跑表功能的计算器。22方法一假定空气阻力不计,可以直接利用自由落体运动的公式来计算。例如,设t=4秒,g=9.81米/秒2,则可求得h≈78.5米。221gth我学过微积分,我可以做得更好,呵呵。23vKmgdtdvmF除去地球吸引力外,对石块下落影响最大的当属空气阻力。根据流体力学知识,此时可设空气阻力正比于石块下落的速度,阻力系数K为常数,因而,由牛顿第二定律可得:kgcevkt令k=K/m,解得代入初始条件v(0)=0,得c=-g/k,故有ktekgkgv再积分一次,得:cekgtkghkt224若设k=0.05并仍设t=4秒,则可求得h≈73.6米。听到回声再按跑表,计算得到的时间中包含了反应时间进一步深入考虑不妨设平均反应时间为0.1秒,假如仍设t=4秒,扣除反应时间后应为3.9秒,代入式①,求得h≈69.9米。222)1(kgektkgkgekgtkghktkt①多测几次,取平均值再一步深入考虑代入初始条件h(0)=0,得到计算山崖高度的公式:将e-kt用泰勒公式展开并令k→0+,即可得出前面不考虑空气阻力时的结果。25还应考虑回声传回来所需要的时间。为此,令石块下落的真正时间为t1,声音传回来的时间记为t2,还得解一个方程组:933401212211.ttthkg)ekt(kghkt这一方程组是非线性的,求解不太容易,为了估算崖高竟要去解一个非线性主程组似乎不合情理相对于石块速度,声音速度要快得多,我们可用方法二先求一次h,令t2=h/340,校正t,求石块下落时间t1≈t-t2将t1代入式①再算一次,得出崖高的近似值。例如,若h=69.9米,则t2≈0.21秒,故t1≈3.69秒,求得h≈62.3米。26