平行线的性质ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

平行线的性质ABP课堂练习:已知直线AB及其外一点P,画出过点P的AB的平行线。平行线的判定方法有哪三种?它们是先知道什么……、后知道什么?同位角相等内错角相等同旁内角互补两直线平行问题方法4:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.方法5、平行线的定义问题2:根据同位角相等可以判定两直线平行,反过来如果两直线平行同位角之间有什么关系呢?内错角,同旁内角之间又有什么关系呢?(1)用直尺和三角尺画出两条平行线a∥b,再画一条截线c,使之与直线a,b相交,并标出所形成的八角.(2)测量上面八个角的大小,记录下来.从中你能发现什么?ABPCDEF问题如果两条直线平行,那么这两条平行线被第三条直线所截而成的同位角有什么数量关系?21结论平行线的性质1(公理)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。同位角都相等吗?为什么?abc12123ab思考回答如图,已知:a//b那么3与2有什么关系?平行线的性质2两条平行线被第三条直线所截,内错角相等简单说成:两直线平行,内错角相等。例如:如右图因为a∥b,所以∠1=∠2(),又∠3=___(对顶角相等),所以∠2=∠3.两直线平行,同位角相等∠1相等c1ba解:∵a//b(已知)∴1=2(两直线平行,同位角相等)∵1+3=180°(邻补角定义)∴2+3=180°(等量代换)如图:已知a//b,那么2与3有什么关系呢?平行线的性质3两条平行线被第三条直线所截,同旁内角互补简单说成:两直线平行,同旁内角互补。23性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.平行线的性质:问题:下列说法正确吗?(1)、同位角相等;(2)、内错角相等;(3)、同旁内角互补。13241234图1ab图2baa与b平行a与b不平行并不是所有的同位角、内错角都相等,同旁内角都互补。只有在两直线平行的条件下才有:同位角、内错角相等,同旁内角互补。例1小青不小心把家里的梯形玻璃块打碎了,还剩下梯形上底的一部分(如图)。要订造一块新的玻璃,已经量得,你想一想,梯形另外两个角各是多少度?解:因为梯形上.下底互相平行,所以梯形的另外两个角分别是100,115DAADBC.,互补与互补与CDBA,65115-180B于是.80100180C.80,65练习1、如图,直线a∥b,∠1=54°,∠2,∠3,∠4各是多少度?解:∵∠2=∠1(对顶角相等)∴∠2=∠1=54°∵a∥b(已知)∴∠4=∠1=54°(两直线平行,同位角相等)∠2+∠3=180°(两直线平行,同旁内角互补)∴∠3=180°-∠2=180°-54°=126°1234abEDCBA(已知)证明:(1)∵∠ADE=60°∠B=60°∴∠ADE=∠B(等量代换)∴DE∥BC(同位角相等,两直线平行)解:(2)∵DE∥BC(已证)∴∠AED=∠C(两直线平行,同位角相等)又∵∠AED=40°(已知)(等量代换)∴∠C=40°2、已知∠ADE=60°∠B=60°∠AED=40°(1)、求证:DE∥BC(2)求∠C的度数证明:如图:∵1=2(已知)∴AD//()∴BCD+D=180()BC内错角相等,两直线平行两直线平行,同旁内角互补21DCBA例、如图:已知1=2求证:BCD+D=180如图:一束平行光线AB和DE射向一个水平镜面后被发射,此时∠1=∠2,∠3=∠4。1234BEACDF(1)∠1___∠3∠2___∠4(2)发射光线BC与EF也平行吗??=?=∵∠2=∠4(已证)∴BC∥EF同位角相等两直线平行∵AB∥DE(已知)∴∠1=∠3(两直线平行同位角相等)∵∠3=∠4(已知)∴∠2=∠4(等量代换)平行潜望镜中的两个镜子MN、EF是平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,请说明为什么进入潜望镜的光线AB和离开潜望镜的光线CD是平行的?F1234ABCDMNE56第一个算出地球周长的人2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的爱拉斯托塞。爱拉斯托塞博学多才。细心的爱拉斯托塞发现:离亚历山大城A约785公里的塞尼城S,夏日正午的阳光可以一直照到井底,也就是说,在那一时刻,太阳正好悬挂在塞尼城的正上方E,阳光能够只指地心O.而在此时他所在的亚历山大城阳光却不能直接射到水井的底部.爱拉斯托塞在地上竖起一根小木棍AC,测量天顶方向AB与太阳方向AD之间的夹角∠1,发现这个夹角等于360°的1/50.EDB1SAO2CEDB1SAO2C由于太阳离地球非常遥远,把射到地球上的阳光看作是彼此平行的,即AD∥SE,所以∠1=∠2.两直线平行,同位角相等。那么∠2的度数也等于360°的1/50,所以,亚历山大城到塞尼城的距离弧AS也等于整个地球周长的1/50.而亚历山大城到塞尼城的距离约为785公里,785×50=369250公里,这是一个相当精确的结果.平行线的“判定”与“性质”有什么不同比一比同位角相等内错角相等同旁内角互补两直线平行判定性质已知得到得到已知小结:图形已知结果结论同位角内错角同旁内角两直线平行同旁内角互补122324abababccc平行线的性质小结a//b21两直线平行同位角相等a//b23两直线平行内错角相等a//b)42(18042互补与如图,直线AB//CD,E在AB与CD之间,且∠B=61°,∠D=34°.求∠BED的度数.12ABEDC解:过点E作EF∥AB∥CD∵EF∥AB∴∠B=∠1∵EF∥CD∴∠D=∠2∴∠BED=∠1+∠2=∠B+∠D=95°F如图:在墙面上安装一管道需经两次拐弯,拐弯后的管道与拐弯前的管道平行。若第一个弯道处∠ABC=142o,那么第二个弯道处∠BCE为多少度?为什么?ABCE答:∠BCE=142o∵AB∥CE∴∠ABC=∠BCE(两直线平行,内错角相等)

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功