2014年潍坊市初中学业水平考试数学试题注意事项:1.本试题分第1卷和第Ⅱ卷两部分.第1卷2页,为选择题,36分;第Ⅱ卷2页,为非选择题,84分;共120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效.第1卷(选择题共36分)一、选择题(本题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记O分.)1.32)1(的立方根是()A.-1B.OC.1D.±1考点:平方,立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据立方根的定义求出-1的立方根,而-1的立方等于-1,由此就求出了这个数的立方根.解答:解:∵32)1(=1而1的立方根等于1,∴32)1(的立方根是1.故选C.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.21教育名师原创作品2.下列标志中不是中心对称图形的是()考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是不中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:C.点评:本题考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.中心对称图形是要寻找对称中心,旋转180度后两部分重合.2·1·c·n·j·y3.下列实数中是无理数的是()A.722B.2-2c.51.5D.sin450考点:无理数;负指数幂;特殊角的三角函数值.分析:先求出sin45°与2-2的值,再根据无理数的概念进行解答即可.解答:∵sin45°=22,是无理数;4122,是有理数;722是分数,属于有理数;51.5是无限循环小数,是有理数。21*cnjy*com故选D.点评:本题考查的是无理数的定义及特殊角的三角函数值,即无限不循环小数叫做无理数.4.一个几何体的三视图如右图所示,则该几何体是()考点:由三视图还原实物图.分析:根据主视图、左视图、俯视图的形状,将它们相交得到几何体的形状.解答:由三视图知,从正面和侧面看都是上面梯形,下面长方形,从上面看为圆环,可以想象到实物体上面是圆台,下面是空心圆柱.【来源:21·世纪·教育·网】故选D.点评:本题考查几何体的三视图与直观图之间的相互转化.5.若代数式2)3(1xx有意义,则实数x的取值范围是()A.x≥一1B.x≥一1且x≠3C.x-lD.x-1且x≠3考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:根据题意得:0301xx解得x≥-1且x≠3.故选B.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.如图,平行四边形ABCD的顶点A、B、D在⊙0上,顶点C在⊙0的直径BE上,连接AE,∠E=360,,则∠ADC的度数是()A,440B.540C.720D.530考点:圆周角定理;平行四边形的性质.分析:根据平行四边形的性质得到∠ABC=∠ADC,再根据圆周角定理的推论由BE为⊙O的直径得到∠BAE=90°,然后根据三角形内角和定理可计算出∠ABE的度数.解答:∵BE为⊙O的直径,∴∠BAE=90°,∴∠ABC=90°-∠AEB=54°.∵四边形ABCD为平行四边形,∴∠ADC=∠ABC=54°,故选B.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了平行四边形的性质.若不等式组2210xxax无解,则实数a的取值范围是()A.a≥一1B.a-1C.a≤1D.a≤-1考点:解一元一次不等式组.分析:先求出②中x的取值范围,再根据不等式组无解确定a的取值范围即可.解答:解①得,x≥-a,解②得,x<1,由于此不等式组无解,故-a≥1,a≤-1.故选D.点评:本题考查的是一元一次不等式组的解法,解答此题的关键是熟知解不等式组解集应遵循的原则“同大取较大,同小去较小,大小小大中间找,大大小小解不了”的原则.8.如图,已知矩形ABCD的长AB为5,宽BC为4.E是BC边上的一个动点,AE⊥上EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是考点:动点问题的函数图象.分析:易证△ABE∽△ECF,根据相似比得出函数表达式,在判断图像.解答:因为△ABE∽△ECF,则BE:CF=AB:EC,即x:y=5:(4-x)y,整理,得y=-51(x-2)2+54,很明显函数图象是开口向下、顶点坐标是(2,54)的抛物线.对应A选项.故选:A.点评:此题考查了动点问题的函数图象,关键列出动点的函数关系,再判断选项.9.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2-12x+k=O的两个根,则k的值是()A:27B:36C:27或36D:18考点:根与系数的关系;等腰三角形的性质.分析:由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行讨论:①当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一根,再根据三角形的三边关系判断出的值是否符合题意即可;②当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.解答:分两种情况:①当其他两条边中有一个为3时,将x=3代入原方程,得32-12×3+k=0,k=27将k=27代入原方程,得x2-12x+27=0,解得x=3或9.3,3,9不能够组成三角形;②当3为底时,则其他两条边相等,即△=0,此时144-4k=0,k=36.将k=36代入原方程,得x2-12x+36=0,解得x=6.3,6,6能够组成三角形,故答案为B.点评:本题考查的是等腰三角形的性质,一元二次方程根的判别式及三角形的三边关系,在解答时要注意分类讨论,不要漏解.10.右图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天.则此人在该市停留期间有且仅有1天空气质量优良的概率是()A、31B、52C、21D、43考点:折线统计图;;几何概率.分析:将所用可能结果列举出来,找出符合要求的,后者除以前者即可。用到的知识点为:概率=所求情况数与总情况数之比解答:7月1日至10日按连续三天划分共有8种情况,其中仅有1天空气质量优良的有4种,所以概率为21,故选C.点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn11.已知一次函数y1=kx+b(kO)与反比例函数y2=xm(m≠O)的图象相交于A、B两点,其横坐标分别是-1和3,当y1y2时,实数x的取值范围是()A.x-l或Ox3B.一1xO或Ox3C.一1xO或x3D.Ox3考点:反比例函数与一次函数的交点问题.分析:画出函数图象,取反比例函数图象位于一次函数图象下方时对应的x的取值范围即可.解答:一次函数y1=kx+b与反比例函数y2=xm的图象相交于A、B两点,且A,B两点的横坐标分别为-1,3,故满足y2<y1的x的取值范围是x<-1或0<x<3.故选A.点评:本题主要考查了反比例函数与一次函数的交点问题的知识点,熟练掌握反比例的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.21·世纪*教育网12,如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(—2012,2)B.(一2012,一2)C.(—2013,—2)D.(—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014,2),即(-2012,2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.分解因式:2x(x-3)一8=.考点:因式分解-十字相乘法等.分析:先提公因式,再按十字相乘法分解因式.解答:2x(x-3)一8=2x2-6x-8=2(x2-3x-4)=2(x-4)(x+1)故答案为:2(x-4)(x+1)点评:本题重点考查了整式的分解因式这个知识点,分解因式要注意有公因式,应先提取公因式,然后再考虑利用其他方法,若是有二项,一般考虑平方差公式,三项则考虑完全平方公式或十字相乘法,本题较简单..计算:82014×(一0.125)2015=.考点:幂的乘方与积的乘方.分析:两数的底数互为负倒数,可以利用积的乘方的逆运算求解.解答:82014×(-0.125)2014=(-0.125×8)2014×(-0.125)=-0.125,故答案为:-0.125点评:此题主要考查积的乘方的逆运算:anbn=(ab)n.15.如图,两个半径均为3的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为.(结果保留π)考点:相交两圆的性质;菱形的性质.分析:连接O1O2,由题意知,四边形AO1BO2B是菱形,且△AO1O2,△BO1O2都是等边三角形,四边形O1AO2B的面积等于两个等边三角形的面积.据此求阴影的面积.解答:连接O1O2,由题意知,四边形AO1BO2B是菱形,且△AO1O2,△BO1O2都是等边三角形,四边形O1AO2B的面积等于两个等边三角形的面积,∴SO1AO2B=2×233)3(432S扇形AO1B=360)3(1202∴S阴影=2(S扇形AO1B-SO1AO2B)=332故答案为:332点评:本题利用了等边三角形判定和性质,等边三角形的面积公式、扇形面积公式求解.16.已知一组数据一3,x,一2,3,1,6的中位数为1,则其方差为.考点:方差;中位数;标准差.分析:先由中位数的概念列出方程,求出x的值,再根据方差的公式进行计算即可.解答:共有6个数据,排序后1总在中间.中位数应该是排序后的第3个数和第4个数的平均数,有21(x+1)=1,∴x=1,数据的平均数=61(-3-2+1+3+6+1)=1,方差S2=61[(-3-1)2+(-2-1)2+(1-1)2+(3-1)2+(6-1)2+(1-1)2]=9;故答案为:9.