小学奥数四年级举一反三16-20

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十六周巧妙求和(二)专题简析:某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。如果是等差数列求和,才可用等差数列求和公式。在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。例1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。这本书共有多少页?分析与解答:根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。要求这本书共多少页也就是求出这列数的和。这列数是一个等差数列,首项=30,末项=60,项数=11,因此可以很快得解:(30+60)×11÷2=495(页)想一想:如果把“第11天”改为“最后一天”该怎样解答?练习一1,刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。这批零件共有多少个?2,胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。最后一天读了50页恰好读完,这本书共有多少页?3,丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。丽丽在这些天中学会了多少个英语单词?例2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?分析与解答:开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。练习二1,有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2,有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。一共有几把锁的钥匙搞乱了?3,有10只盒子,44只羽毛球。能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?例3:某班有51个同学,毕业时每人都和其他的每个人握一次手。那么共握了多少次手?分析与解答:假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第三个人握了48次。依次类推,第50个人和剩下的一人握了1次手,这样,他们握手的次数和为:50+49+48+…+2+1=(50+1)×50÷2=1275(次)练习三1,学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。如果有21人参加比赛,一共要进行多少场比赛?2,在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。那么一共握了多少次手?3,假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?例4:求1~99这99个连续自然数的所有数字之和。分析与解答:首先应该弄清楚这题是求99个连续自然数的数字之和,而不是求这99个数之和。为了能方便地解决问题,我们不妨把0算进来(它不影响我们计算数字之和)计算0~99这100个数的数字之和。这100个数头尾两配对后每两个数的数字之和都相等,是9+9=18,一共有100÷2=50对,所以,1~99这99个连续自然数的所有数字之和是18×50=900。练习四1,求1~199这199个连续自然数的所有数字之和。2,求1~999这999个连续自然数的所有数字之和。3,求1~3000这3000个连续自然数的所有数字之和。例5:求1~209这209个连续自然数的全部数字之和。分析与解答:不妨先求0~199的所有数字之和,再求200~209的所有数字之和,然后把它们合起来。0~199的所有数字之和为(1+9×2)×(200÷2)=1900,200~209的所有数字之和为2×10+1+2+…+9=65。所以,1~209这209个连续自然数的全部数字之和为1900+65=1965。练习五1,求1~308连续自然数的全部数字之和。2,求1~2009连续自然数的全部数字之和。3,求连续自然数2000~5000的全部数字之和。第十七周数数图形专题简析:我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。要准确、迅速地计数图形必须注意以下几点:1,弄清被数图形的特征和变化规律。2,要按一定的顺序数,做到不重复,不遗漏。例1:数出下面图中有多少条线段。DCBA分析与解答:要正确解答这类问题,需要我们按照一定的顺序来数,做到不重复,不遗漏。从图中可以看出,从A点出发的不同线段有3条:AB、AC、AD;从B点出发的不同线段有2条:BC、BD;从C点出发的不同线段有1条:CD。因此,图中共有3+2+1=6条线段。练习一:数出下列图中有多少条线段。(1)EDCBA(2)(3)例2:数一数下图中有多少个锐角。EDCBAO分析与解答:数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点,因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得:1+2+3+4=10(个)练习二:下列各图中各有多少个锐角?(1)(2)(3)例3:数一数下图中共有多少个三角形。DCBA分析与解答:图中AD边上的每一条线段与顶点O构成一个三角形,也就是说,AD边上有几条线段,就构成了几个三角形,因为AD上有4个点,共有1+2+3=6条线段,所以图中有6个三角形。练习三:数一数下面图中各有多少个三角形。例4:数一数下图中共有多少个三角形。DCBAFEO分析与解答:与前一个例子相比,图中多了一条线段EF,因此三角形的个数应是AD和EF上面的线段与点O所围成的三角形个数的和。显然,以AD上的线段为底边的三角形也是1+2+3=6个,所以图中共有6×2=12个三角形。练习四:数一数下面各图中各有多少个三角形。例5:数一数下图中有多少个长方形。DCBA分析与解答:数长方形与数线段的方法类似。可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形。练习五:数一数下面各图中分别有多少个长方形。第十八周数数图形(二)专题简析:在解决数图形问题时,首先要认真分析图形的组成规律,根据图形特点选择适当的方法,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来。例1:数一数下图中有多少个长方形?CDBA分析与解答:图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形。数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数练习一:数一数,下面各图中分别有几个长方形?(1)(2)(3)例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)分析与解答:图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个。所以图中的正方形总数为:1+4+9=14个。经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。练习二:数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)(1)(2)(3)例3:数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)分析与解答:边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有2×1=2个。所以,图中正方形的总数为:6+2=8个。经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n练习三1.数一数下列各图中分别有多少个正方形。(1)(2)2.下图中有多少个长方形,其中有多少个是正方形?(3)例4:从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?分析与解答:这道题是数线段的方法在实际生活中的应用,连同广州、北京在内,这条铁路上共有10个站,共有1+2+3+…+9=45条线段,因此要准备45种不同的车票。由于这些车站之间的距离各不相等,因此,有多少种不同的车票,就有多少种不同的票价,所以共有45种不同的票价。练习四1,从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2,从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3,从成都到南京的快车,中途要停靠9个站,有几种不同的票价?例5:求下列图中线段长度的总和。(单位:厘米)EDCBA3241分析与解答:要求图中的线段长度总和,可以这样计算:AB+AC+AD+AE+BC+BD+BE+CD+CE+DE=1+(1+4)+(1+4+2)+(1+4+2+3)+4+(4+2)+(4+2+3)+2+(2+3)=352厘米从上面的计算中可以发现这样一个规律,算式中长1厘米的基本线段(我们把不能再划分的线段称为基本线段)出现了4次,长4厘米的线段出现了(3×2)次,长2厘米的线段出现了(2×3)次,长3厘米的线段出现了(1×4)次,所以,各线段长度的总和还可以这样算:1×4+4×(3×2)+2×(2×3)+3×(1×4)=1×(5-1)+4×(5-2)×2+2×(5-3)×3+3×(5-4)×4=52厘米上式中的5是线段上的5个点,如果设线段上的点数为n,基本线段分别为a1、a2、…a(n-1)。以上各线段长度的总和为L,那么L=a1×(n-1)×1+a2×(n-2)×2+a3×(n-3)×3+…+a(n-1)×1×(n-1)。练习五1,一条线段上有21个点(包括两个端点),相邻两点的距离都是4厘米,所有线段长度的总和是多少?2,求下图中所有线段的总和。(单位:米)4623,求下图中所有线段的总和。(单位:厘米)9548第十九周应用题(二)专题简析:解答复合应用题时一般有如下四个步骤:1,弄清题意,找出已知条件和所求问题;2,分析已知条件和所求问题之间的关系,找出解题的途径;3,拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。例1:某发电厂有10200吨煤,前10天每天烧煤300吨,后来改进炉灶,每天烧煤240吨。这堆煤还能烧多少天?分析与解答:条件摘录前10天每天烧煤300吨10200吨能烧多少天?后来每天烧煤240吨综合法思路:前10天每天烧煤300吨,可以求出10天烧的吨数;已知煤的总吨数和前10天烧的吨数,可以求出还有多少吨没有烧;根据还剩的吨数和后来每天烧煤240吨,可以求出这堆煤还能烧多少天。分析法思路:要求还能烧多少天,要知道还有的吨数和后来每天烧的吨数(240吨);要求还有多少吨煤,要知道这堆煤有多少吨(10200吨)和已经烧了多少吨。要求已经烧了多少吨,要知道已经烧了多少天(10天)和每天烧多少吨(300吨)。(10200-300×10)÷240=30(天)练习一1,某电冰箱厂要生产1560台冰箱,已经生产了8天,每天生产120台。剩下的每天生产150台,还要多少天才能完成任务?2,某工厂计划生产36500套轴承,前5天平均每天生产2100套,后来改进操作方法,平均每天可以生产2600套。这样完成这批轴承生产任务共需多少天?3,某机床厂计划每天生产机床40台,30天完成任务。现在要提前10天完成任务,每天要生产多少台?例2:师傅和徒弟同时开始加工200个零件,师傅每小时加工25个,完

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功