Moderate deviations and functional LIL for super-B

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ModeratedeviationsandfunctionalLILforsuper-BrownianmotionAlexanderSchiedHumboldt-UniversitatzuBerlinAbstract:AmoderatedeviationprincipleandaStrassentypelawoftheiteratedloga-rithmforthesmall-timepropagationofsuper-Brownianmotionarederived.OneofthemaintoolsisanembeddingtheorembetweencertainHolderandOrliczspaces.ItenablesonetocontroltheHoldernormofareal-valuedstochasticprocess,andmaybeofindepen-dentinterest.Toprovethelawoftheiteratedlogarithm,moderatedeviationestimatesthatareuniformwithrespecttothestartingpointarederived.1.IntroductionLetM+(IRd)denotethespaceofpositivenitemeasuresonIRdandendowitwiththeusualweaktopology.Thensuper-BrownianmotionXisanM+(IRd)-valueddiusion.ThelawIPofthisprocessstartingfrom2M+(IRd)maybecharacterizedasfollowsbytheLaplacefunctionalsofitstransitionprobabilities:(1:1)IEhexp(hf;Xti)i=exp(hu(t);i);wheret0,fisanon-negativefunctioninCb(IRd),thespaceofboundedandcontinuousfunctionsonIRd,hg;idenotestheintegralofafunctiongwithrespecttosomemeasure,anduistheuniquepositivemildsolutionofthereaction-diusionequation(1:2)@@tu(t;x)=12u(t;x)u(t;x)2u(0;x)=f(x):AMS1991subjectclassication.Primary60F10,60F17,Secondary60G57;60G17Keywordsandphrases.Moderatedeviations,Strassentypelawoftheiteratedlogarithm,Holderspace,Orliczspace,uniformlargedeviations.1ThereadermayndacomprehensiveintroductiontosuperprocessesinDawson(1993).ThegoalofthispaperistoderiveamoderatedeviationprincipleandalocallawoftheiteratedlogarithmofStrassentypeforsuper-Brownianmotion.Thereforeitisnecessarytocentertheprocess.Itfollowsfrom(1.1)and(1.2)thatIEhf;Xti=hf;Pti(t0;f2Cb(IRd));wherePt(x;dy)=(2t)d=2exp(jxyj2=2t)dyistheBrowniantransitionsemigroup.Thecenteredprocessisthusgivenby(1:3)bXt=XtX0Pt(t0):IttakesvaluesinthesetM(IRd)ofnitesignedmeasures.Thisspacewillbeendowedwiththecoarsesttopologysuchthatthemappings7!hf;iarecontinuousforeachf2BL,thespaceofboundedLipschitzfunctionsonIRd.Notethat,incontrasttotheconvexconeM+(IRd),thetopologicalspaceM(IRd)isnotmetrizable;seeDudley(1966).ThesetC[0;1]:M(IRd)ofallcontinuousM(IRd)-valuedpathswillbeendowedwiththecompactopentopology.WhenM(IRd)isendowedwiththevariationnorm,itbecomesa(non-separable)Banachspace,andonecandeneBochnerintegrals.For2M+(IRd),wedeneHtobethesetofall!2C[0;1]:M(IRd)thatareoftheform!(t)=Zt0_!(s)ds(t0);forsomeBochnerintegrablemapping_!:[0;1]!M(IRd)suchthat_!(t),foralmosteveryt.ThenwedenetheGaussianratefunction(1:4)I(!)=8:14Z10d_!(t)d2L2()dtif!2H1otherwise.Theorem1.1:Suppose:(0;1]!(0;1]isafunctionsuchthat()&0as#0.ThenthedistributionsoftheprocessesbX;()t:=()1bX()2t(0t1)satisfyalargedeviationprincipleonC[0;1]:M(IRd)withscaleandgoodratefunctionI.I.e.,ifUC[0;1]:M(IRd)isopen,thenlim#0logIPbX;()2Uinf!2UI(!);ifAC[0;1]:M(IRd)isclosed,thenlim#0logIPbX;()2Ainf!2AI(!);thelevelsetsfIcgarecompact,foreachc0.2Duetothecondition‘()&0as#0’,Theorem1.1describesthemoderatedeviationsfromthe‘lawoflargenumbers’Xt!IP-almostsurely,ast#0.Thecorrespondinglargedeviations,i.e.thecase1,aretreatedasCorollary3ofSchied(1996).Inthiscaseonegetsanon-Gaussianratefunction,namelytheenergywithrespecttotheKakutani-Hellingermetric.If1and#0,weareintheregimeofafunctionalcentrallimittheorem;seetheremarkattheendofSection4.Otherresultsonsamplepathlargedeviationsforsuper-BrownianmotioncanbefoundinDeuschelandWang(1993),Fleischmannetal.(1996)andSchied(1996).LetAdenotethesetofallclosedsubsetsofC[0;1]:M(IRd).Iffdjjj2Jgisalteringfamilyofsemi-distancesonC[0;1]:M(IRd),theHausdortopologyonAisgeneratedbythesemi-metricsj(A;B):=supx2Adj(x;B)_supy2Bdj(y;A)(j2J;A;B2A):SeeCastaingandValadier(1977),ChapterII.For1=e,deneanA-valuedrandomvariableasclosureoftherandomset(bXtp2loglog1(0t1)0):Thenourlawoftheiteratedlogarithmreadsasfollows:Theorem1.2:IfUAisopenandK:=fI1=2g2U,then2U,forsmall,IP-almostsurely.Inparticular,convergesinIP-probabilitytoKas#0.NotethatwecannotconcludealmostsureconvergenceoftoK,becausetherstcountabilityaxiomfailsforM(IRd)andhenceforA.DawsonandVinogradov(1994)giveatypeofalocalLILfortheset-valuedsupportprocessofa(2;d;)-superprocess.Theygetadierentscalefunction,thatlooksmoreliketheglobalmodulusofcontinuityofaBrownianmotion.Toexplainthisfact,theyarguethat,becauseofthebranching,onemustexpectthealmost-sureoccurrenceofverylargeincrements(or‘fastpoints’)ofindividualBrownianmotions,evenonarbitrarysmalltimeintervals.SeeRemark(iii)followingTheorem1.3oftheabovearticle.Inadditiontothisresult,ourTheorem1.2nowstatesthat,forsmalltimeintervals,themajorityofparticlesinthepopulationstaysclosetotheplaceoftheirorigin,andthatthebranchingbehaviourfollowsalocaliteratedlogarithm.3Thereisavastliteratureonfunctionallawsoftheiteratedlogarithm.TheoriginalstatementisduetoStrassen(1964).HerewewilladoptStroock’sideaofusinglargedeviationstogetthekeyestimates(seee.g.DeuschelandStroock(1989)).ForordinaryBrownianmotion,thelocallawhasbeenstatedinGantert(1993).Inthemeasure-valuedsetting,moderatedeviationshavebeenusedinWu(19

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功