2,,[1]。Laval,,、,()、、[2-4]。,、,,、,FLUENTLaval,,Laval。1Laval、、4。R1=20mm,L1=50mm;[5-6],,,L2=56mm;,R*=5mm;,10000s-1,L3=71.28mm,R3=6.15mm。,Laval,Laval,1。2,[7-11]。(),、;,。,、、。:2017-09-04;:(2016YFC0802302,2016YFC0802304),(51274232,51406240),(ZR2014EEQ003);:(1992-),,,,Email:bian-jiang868@163.com;*:(1966-),,,,、、,Email:caoxw@upc.edu.cn。Laval-1,1*,2,3,1(1.(),266580;2.,510620;3.,257000):Laval-,,-,,,-,:,-,,Laval、,;00.879×1021m-3·s-1(x=0.139m);Laval4.476×10-7kg-1,4.462×1014m-3,6.089%。:Laval;-;;;:TE64:A:1001-9219(2018)02-69-061LavalFig.1StructurediagramoftheLavalnozzle:Laval-69201843—C1(1):(2):(3):,ui、uj,m/s;ρv,kg·m-3;ρ,kg·m-3;p,Pa;μ,kg/(m·s);δijKroneckerdelta;E,J/kg;keff,W/(m·K);τeff,;Sm、Su、Sh、SY、、、;Sm-c2;J,1/(m3·s);Y,;rd,m;drd/dt,m/s;N,1/kg;ρL1,kg/m3;ρL2,kg/m3;M1、M2、,kg/mol;m1、m2、,kg/(m3·s);m3、m4、,kg/(m3·s);x1、x2、;y1、y2、。[12],,。,Gyarmathy,kr[13]:、,drd/dt[14]:,λV,W/(m·K);PrvPrandtl;γ;hLV,J/kg;Ts,K。Kn:,l,m。,,NIST。3Laval,,、、。(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)702:10-6;、、10-3;0.05%,。Laval,::,6MPa,270K,10%。:,Laval,Laval,。:、、。4,()-,2。:Laval0.586MPa,288.05K,98.1%,84:16,323.78Nm3/h,Laval3,,,。5Laval,、、,。Laval,、,4~6Laval-、、。1-;2-;3-;4-;5、6-;7-;8-;9-;10、17-;11、15-;12-;13-Laval;14-;16-2Fig.2Flowchartofthesupersoniccondensationandflowexperimentalsystem3LavalFig.3ComparisonofpressuredistributiondataintheLavalnozzle4LavalFig.4ComparisonofgaspressuredistributionintheLavalnozzle:Laval-71201843—C1、、:,,Laval,,。,Laval,。,-,Laval,。,[15]。,,。,[15],,-,。6-7~10Laval-,:、、。,Laval,(x=0.134m),,x=0.139mJ=0.879×1021m-3·s-1。,Laval,。、。,Laval,,5LavalFig.5ComparisonofgasMachnumberdistributionintheLavalnozzle6LavalFig.6ComparisonofgastemperaturedistributionintheLavalnozzle7LavalFig.7NucleationratedistributionintheLavalnozzle8LavalFig.8DropletradiusdistributionintheLavalnozzle722,,,,Laval,4.476×10-7m。,LavalLaval,(x=0.133m),,,N=4.462×1014kg-1。,。、,Laval,,。Laval,x=0.140m,Laval6.089%。7Laval,-,,,-,:(1)Laval,。(2),,,-,Laval,。,。,,。(3),00.879×1021m-3·s-1(x=0.139m),,,0。,,,Laval,4.476×10-7m。Laval4.462×1014kg-1,6.089%。(4),Laval-,Laval,(,)、(、、),Laval。[1],,,.[J].—C1,2015,40(3):88-93.[2]OkimotoF,BrouwerJM.Supersonicgasconditioning[J].WorldOil,2002,223:1170-1178.[3],,,.[J].,2012,32(7):77-79.[4]BianJ,JiangWM,TengL,etal.Structureimprove-mentsandnumericalsimulationofsupersonicseparators9LavalFig.9DropletnumberdistributionintheLavalnozzle10LavalFig.10LiquidmassfractiondistributionintheLavalnozzle:Laval-73201843—C1[J].ChemEngProcess,2016,110:214-219.[5],,,.[J].,2007,27(7):112-114.[6],,,.Laval[J].,2016,44(12):67-71+76.[7].[M].:,1987.[8],,.[J].,2014,13(3):198-205.[9]JiangWM,BianJ,LiuY,etal.Investigationofflowcharacteristicsandthecondensationmechanismofternarymixtureinasupersonicnozzle[J].JNatGasSciEng,2016,34:1054-1061.[10],,,.[J].(),2008,23(1):56-60.[11]YangY,WaltherJH,YanYY,etal.CFDmodellingofcondensationprocessofwatervaporinsupersonicflows[J].ApplThermEng,2017,115:1357-1362.[12],,,.[J].(),2017,33(2):273-280.[13].[D].:,2010.[14]BianJ,JiangWM,HouDY,etal.CondensationcharacteristicsofCH4-CO2mixturegasinasupersonicnozzle[J].PowderTechnol,2018,293:1-11.[15].[D].,2010.Lowtemperatureliquefactioncharacteristicsofmethane-ethanemixedgasintheLavalnozzleBIANJiang1,CAOXue-wen1,YANGWen2,LIUYang3,JIANGWen-ming1(1.CollegeofPipelineandCivilEngineering,ChinaUniversityofPetroleum,Qingdao266580,China;2.SouthChinaBranch,SinopecSalesCo.,Ltd.,Guangzhou510620,China;3.PetroleumDevelopmentCenterCo.,Ltd.,SinopecShengliOilfield,Dongying257000,China)Abstract:Inordertomakeclearmethane-ethaneliquefactioncharacteristicsoftheLavalnozzleandobtainflowandcondensationparametersinthesupersonicliquefactionprocessofnaturalgas,themathematicalmodelforthesupersoniccondensationflowofmethane-ethanemixedgaswasestablished,andtheexperimentalverificationofgascondensatephasetransitionofdoublecondensablecomponentswascarriedout.Theflowfieldcharacteristicsundertheconditionofcondensationflowandisentropicflowwerecompared,andlowtemperatureliquefactioncharacteristicsofmethane-ethanemixedgasintheLavalnozzlewerestudied.Theresultsshowedthatwhenthecondensationoccurs,aweakcondensationshock-waveemergedintheflowofmethane-ethanemixedgas,comparedwiththeisentropicexpansionprocess,thepressureandtemperatureatoutletoftheLavalnozzleincreased,andtheMachnumberdecreased.Inaveryshortdistance,thenucleationratesharplyincreasedfrom0sharplytoamaximumvalueof0.879×1021m-3·s-1(approximatelyatx=0.139m);themaximumdropletradiusintheLavalnozzlewas4.476×10-7m;themaximumdropletnumberwas4.462×1014m-3;andthemaximumliquidmassfractionwas6.089%.Keywords:Lavalnozzle;methane-ethane;liquefaction;condensation;numericalsimulation!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(ZionMarketResearch)“HydrogenMarketbyDeliveryMode(Captive,Merchant),byTechnology(SteamMethaneReforming,PartialOxidationofOil,CoalGasification,ElectrolysisofWater)andbyEndUser(Chemical,PetroleumRefining,MetalProcessing,AutomotiveFuel,GlassIndustry,EdibleFatsandOils,Energy,andOthers):GlobalIndustryPerspective,ComprehensiveAnalysisandForecast,20172023”。,20171292.5,20231833.4,2017