1.1.1集合的含义与表示第二课时集合的表示问题提出1.集合中的元素有哪些特征?确定性、无序性、互异性2.元素与集合有哪几种关系?属于、不属于3.用自然语言描述一个集合往往是不简明的,如“在平面直角坐标系中以原点为圆心,2为半径的圆周上的点”组成的集合,那么,我们可以用什么方式表示集合呢?知识探究(一)思考1:这两个集合分别有哪些元素?考察下列集合:(1)小于5的所有自然数组成的集合;(2)方程的所有实数根组成的集合.3xx(1)0,1,2,3,4;(2)-1,0,1思考2:由上述两组数组成的集合可分别怎样表示?(1){0,1,2,3,4};(2){-1,0,1}象这样把集合中的元素一一列举出来,并用花括号“{}”括起来,表示集合的方法叫做列举法即{,,,}abc23320341xxxyxy思考:怎样表示的解集?思考:怎样表示的解集?1,2(1,2)知识探究(二)考察下列集合:(1)不等式的解组成的集合;(2)绝对值小于2的实数组成的集合.273x思考1:这两个集合能否用列举法表示?思考2:如何用数学式子描述上述两个集合的元素特征?(1)R,且;(2)R,且x5xx||2x思考3:上述两个集合可分别怎样表示?(1){R|};(2){R|}x5xx||2x用集合所含元素的共同特性表示集合的方法称为描述法。具体方法是:{元素的一般符号及取值范围|元素所具有的性质}知识探究(三)思考1:与{}的含义是否相同?aa思考2:集合{1,2}与集合{(1,2)}相同吗?思考3:集合与集合相同吗?2{|,}yyxxR2{}yx思考4:集合的几何意义如何?2{(,)|,}xyyxxRxyo2yx理论迁移例1用适当的方法表示下列集合:(1)绝对值小于3的所有整数组成的集合;(2)在平面直角坐标系中以原点为圆心,1为半径的圆周上的点组成的集合;(3)所有奇数组成的集合;(4)由数字1,2,3组成的所有三位数构成的集合.{-2,-1,0,1,2}或{|||3}xZx22{(,)|1}xyxy{|21,}xxkkZ{123,132,213,231,312,321}.例2用列举法表示下列集合:(1);(2).4|3AxZZx(,)|3,,xyxyxNyN(1){-1,1,2,4,5,7};(2){(0,3),(1,2),(2,1),(3,0)}例3设集合,已知,求实数的值.5,|1|,21Aaa3Aa例4已知集合A={1,2,3},B={1,2},设集合C=,试用列举法表示集合C.|,,xxabaAbBC={-1,0,1,2}1或-4作业:P5练习:2.P11习题1.1A组:2、3、4.2A,,2,,,,aadadBaaqaqa思考题:已知集合=为常数,若A=B,求d,q的值.