激光焊接06031107李禹铮•激光焊接技术学习报告••••(一)激光焊接技术简介••激光焊接是激光加工材料加工技术应用的重要方面之一。70年代主要用于•焊接薄壁材料和低速焊接,焊接过程属于热传导型(即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池)由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的YAG激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学,微电子行业等领域的应用越来越广。•(二)激光焊接原理:•激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。•(三)激光焊接的两种机理:•1、热传导焊接当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。•2、激光深熔焊当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。•这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。熔池是指因焊弧热而熔化成池状的母材部分。•(四)目前激光焊的主要应用:•制造业应用、粉末冶金领域、汽车工业、电子工业、生物医学•(五)激光焊接的特点•激光焊接的特点是被焊接工件变形极小,几乎没有连接间隙,焊接深度/宽度比高,因此焊接质量比传统焊接方法高。•(六)激光焊接的主要特性。•与其它传统焊接技术相比,激光焊接的主要优点是:•1、速度快、深度大、变形小。2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。•4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。•激光焊接也存在着一定的局限性:•1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。•2、激光器及其相关系统的成本较高,一次性投资较大。•(七)激光焊接的工艺参数。•1、功率密度。•功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/CM2。•2、激光脉冲波形。•激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。•3、激光脉冲宽度。•脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。•4、离焦量对焊接质量的影响。•激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。•离焦方式有两种:正离焦与负离焦。•焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。•(九)适合激光焊的材质:•1、模具钢。S136,SKD-11,NAK80,8407,718,738,H13,P20,W302,2344等•2、碳钢及普通合金钢。总的说,碳钢激光焊接效果良好,其焊接质量取决于杂质含量。就象其它焊接工艺一样,硫和磷是产生焊接裂纹的敏感因素。为了获得满意的焊接质量,碳含量超过0.25%时需要预热。当不同含碳量的钢相互焊接时,焊炬可稍偏向低碳材料一边,以确保接头质量。低碳沸腾钢由于硫、磷的含量高,并不适合激光焊接。低碳镇静钢由于低的杂质含量,焊接效果就很好。中、高碳钢和普通合金钢都可以进行良好的激光焊接,但需要预热和焊后处理,以消除应力,避免裂纹形成。•3、不锈钢。一般的情况下,不锈钢激光焊接比常规焊接更易于获得优质接头。由于高的焊接速度热影响区很小,敏化不成为重要问题。与碳钢相比,不锈钢低的热导系数更易于获得深熔窄焊缝。•4、不同钢材之间的激光焊接。激光焊接极高的冷却速度和很小的热影响区,为许多不同金属焊接融化后有不同结构的材料相容创造了有利条件。以下金属可以顺利进行激光深熔焊接:不锈钢~低碳钢,416不锈钢~310不锈钢,347不锈钢~HASTALLY镍合金,镍电极~冷锻钢,不同镍含量的双金属带。•5、钛、镍、锡、铜、铝、铬、铌、金、银等多种金属及其合金,及钢、可伐合金等合金的同种材料间的焊接。有色金属相对难焊,其紫铜合金、银合金最难焊。•6、应用于铜-镍、镍-钛、铜-钛、钛-钼、黄铜-铜、低碳钢-铜等多种异种金属间的焊接。•发展过程(简单了解):•世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受•限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值•能量可高达10^6瓦,但仍属于低能量输出。使用钕(ND)为激发元素的钇铝石榴石晶棒(Nd:YAG)可产生1---8KW的连•续单一波长光束。YAG激光,波长为1.06uM,可以通过柔性光纤连接到激光加•工头,设备布局灵活,适用焊接厚度0.5-6mm。使用CO2为激发物的CO2激光(波长10.6uM),输出能量可达25KW,可做•出2mm板厚单道全渗透焊接,工业界已广泛用于金属的加工上。设备•a.LD泵浦固体激光关于半导体激光(LD)浦固体激光设备,其开发研究在世界上很活跃。在日本作为“光子工程”国家项目已研究开发出10kw小型(Rod型和Slab型)设备。在美国,作为“精密激光加工”国家项目。研究开发出了3kWLD泵浦Slab型固体激光设备可获得20-30mm的大熔深焊缝。由于焊缝宽度极小,可使激光束作横向运动扩大了熔化宽度。现在德国开发的LD泵浦薄圆盘固体激光最受注目它具有体积小、质量好、效率高和可大功率化等特点Hass公司已开发出LD泵浦4kW的圆盘激光设备并将开发10kW级的设备。•b.半导体激光设备目前,许多公司正在研制大功率的半导体,现已出现2~6kW级的商用小型设备。由于体积小、质量轻,半导体激光器可直接搭载于机器人上进行焊接等加工,另外也可用光纤传输半导体激光进行焊接。尽管半导体激光器效率高、波长短但由于存在激光发散角度大、工作距离(焦深)短这一缺点目前仅用于激光钎焊及塑料等的焊接。•c.激光远程焊接(RemoteWelding)设备由于高光束质量的激光器相继问世如板条CO2激光器、光纤激光器和盘式YAG激光器(DiscLaser)使得激光远程焊接或称激光扫描焊接(LaserScanningWelding)成为可能并极大地提高了汽车车身件激光焊接速度。目前,已有固定龙门式加工机+CO2激光器、机器人+光纤激光器或盘式YAG激光器等汽车车身件制造用激光远程焊接设备。THANKYOU