邵一中杜海光2.3.2平面向量的正交分解及坐标表示复习平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2a=λ1e1+λ2e2复习(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式唯一.λ1,λ2是被a,e1、e2唯一确定的数量。G=F1+F2F1F2GG=F1+F2叫做重力G的分解新课引入G与F1,F2有什么关系?类似地,由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2把一个向量分解为两个互相垂直的向量,叫做把向量正交分解若两个不共线向量互相垂直时aλ1a1λ2a2F1F2G正交分解我们知道,在平面直角坐标系,每一个点都可用一对有序实数(即它的坐标)表示,对直角坐标平面内的每一个向量,如何表示?在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便。yOxji分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=xi+yj把(x,y)叫做向量a的坐标,记作a=(x,y)其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标axiyji=j=0=(1,0)(0,1)(0,0)ayOxxiyjjia=(x,y)(一)yOxajixiyj相等的向量坐标相同向量a、b有什么关系?a=b能说出向量b的坐标吗?b=(x,y)bxiyjyxAa如图,在直角坐标平面内,以原点O为起点作OA=a,则点A的位置由a唯一确定。yxOjia(x,y)因此,在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。反过来,点A的坐标(x,y)也就是向量OA的坐标。设OA=xi+yj,则向量OA的坐标(x,y)就是点A的坐标;4321-1-2-3-2246ij),(yxP(,)OPxiyjxy向量的坐标与点的坐标关系O向量P(x,y)一一对应OPxiyj例1:如图,用基底i,j分别表示向量a、b、c、d,并求出它们的坐标.AA1A2abcd解:同理,b=-2i+3j=(-2,3)c=-2i-3j=(-2,-3)d=2i-3j=(2,-3)yxO1234-4-3-2-154321-1-2-3-4-5ji1234a=(2,3)由图可知a=AA1+AA2=2i+3j,已知,求的坐标.ABOxyB(x2,y2)A(x1,y1)ABOBOA结论1:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。1122(,),(,)AxyBxy2,211()(,)xyxy2121(,)xxyy总结:对向量坐标表示的理解:(1)任一平面向量都有唯一的坐标;(2)向量的坐标等于终点坐标减去起点坐标;当向量的起点在原点时,向量终点的坐标即为向量的坐标.(3)相等的向量有相等的坐标.),,(),,(若2211yxbyxa2121且则yyxxba练习:在同一直角坐标系内画出下列向量.(1)(1,2)a(2)(1,2)b(1,2)A.xyoaxyo(1,2)B.解:b思考:点的坐标与向量坐标有什么区别和联系?(3)联系:当平面向量的起点在原点时,平面向量的坐标与向量终点的坐标相同。剖析:(1)表示形式不同:向量中间用等号连接,而点A(x,y)的坐标中间没有等号。),(yxa(2)意义不同:点A(x,y)的坐标(x,y)表示点A在平面直角坐标系中的位置,的坐标(x,y)既表示向量的大小,也表示向量的方向,另外,(x,y)既可以表示点,也可以表示向量,叙述时应指明点(x,y)或向量。),(yxa),(yxa1、优化设计P50例1、例22、讲评优化设计P46能力提升2、3、4、5、73、讲评优化设计P49能力提升1、3、6、8小结平面向量的正交分解平面向量的坐标表示向量的坐标表示是一种向量与坐标的对应关系,它使得向量具有代数意义.将向量的起点平移到坐标原点,则平移后向量的终点坐标就是向量的坐标.作业布置3、完成优化设计P50-51《2.3.2平面向量的正交分解及坐标表示》1、预习课本P96-98《2.3.3平面向量的坐标运算》2、完成课本P100练习1、2、3(做在书上)霸祖孤身取二江,子孙多以百城降。豪华尽出成功后,逸乐安知与祸双?——王安石