数列高考真题汇编1.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-14nanan+1,求数列{bn}的前n项和Tn.解析(1)因为S1=a1,S2=2a1+2×12×2=2a1+2,S4=4a1+4×32×2=4a1+12,(3分)由题意得(2a1+2)2=a1(4a1+12),解得a1=1.所以an=2n-1.(5分)(2)bn=(-1)n-14nanan+1=(-1)n-14n2n-12n+1=(-1)n-112n-1+12n+1.(6分)当n为偶数时,Tn=1+13-13+15+…+12n-3+12n-1-12n-1+12n+1=1-12n+1=2n2n+1.当n为奇数时,Tn=1+13-13+15+…-12n-3+12n-1+12n-1+12n+1=1+12n+1=2n+22n+1.(10分)2.已知数列{an}的前n项和Sn=n2+n2,n∈N*.(1)求数列{an}的通项公式;(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.解析(1)当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=n2+n2-n-12+n-12=n.故数列{an}的通项公式为an=n.(2)由(1)知,an=n,故bn=2n+(-1)nn.记数列{bn}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).记A=21+22+…+22n,B=-1+2-3+4-…+2n,则A=21-22n1-2=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故数列{bn}的前2n项和T2n=A+B=22n+1+n-2.3.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.(1)证明:数列ann是等差数列;(2)设bn=3n·an,求数列{bn}的前n项和Sn.解析(1)证明:由已知可得an+1n+1=ann+1,即an+1n+1-ann=1.(4分)所以数列ann是以a11=1为首项,1为公差的等差数列.(5分)(2)解:由(1)得ann=1+(n-1)·1=n,所以an=n2.从而bn=n·3n.(7分)Sn=1×31+2×32+3×33+…+n·3n,①3Sn=1×32+2×33+…+(n-1)·3n+n·3n+1.②①—②,得-2Sn=31+32+…+3n-n·3n+1=3·1-3n1-3-n·3n+1=1-2n·3n+1-32.(10分)所以Sn=2n-1·3n+1+34.(12分)4.已知Sn是数列{an}的前n项和,a1=2,Sn+1=3Sn+n2+2(n∈N*),设bn=an+n.(1)证明:数列{bn}是等比数列;(2)若cn=nbn,数列{cn}的前n项和为Tn,求证:Tn45.解析(1)证明:因为a1=2,Sn+1=3Sn+n2+2,所以当n=1时,a1+a2=3a1+12+2,解得a2=7.(2分)由Sn+1=3Sn+n2+2及Sn=3Sn-1+(n-1)2+2(n≥2),两式相减,得an+1=3an+2n-1.故an+1+n+1=3(an+n).即bn+1=3bn(n≥2).(4分)又b1=3,b2=9,所以当n=1时上式也成立.故数列{bn}是以3为首项,3为公比的等比数列.(5分)(2)由(1)知bn=3n,所以cn=n3n.所以Tn=13+232+333+…+n-13n-1+n3n,①3Tn=1+23+332+…+n-13n-2+n3n-1.②(7分)②-①,得2Tn=1+13+132+…+13n-1-n3n=32-3+2n2·3n.所以Tn=34-3+2n4·3n.(10分)因为n∈N*,显然有3+2n4·3n0.又3445,所以Tn45.(12分)5.已知首项为12的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.(1)求数列{an}的通项公式;(2)若bn=an·log2an,数列{bn}的前n项和为Tn.解析(1)设等比数列{an}的公比为q,由题知a1=12,又∵S1+a1,S2+a2,S3+a3成等差数列,∴2(S2+a2)=S1+a1+S3+a3.∴S2-S1+2a2=a1+S3-S2+a3,即3a2=a1+2a3.∴32q=12+q2,解得q=1或q=12.(4分)又{an}为递减数列,于是q=12.∴an=a1qn-1=(12)n.(6分)(2)∵bn=anlog2an=-n(12)n,∴Tn=-[1×12+2×(12)2+…+(n-1)(12)n-1+n×(12)n].于是12Tn=-[1×(12)2+…+(n-1)(12)n+n×(12)n+1].(8分)两式相减,得12Tn=-[12+(12)2+…+(12)n-n×(12)n+1]=-12×[1-12n]1-12+n×(12)n+1.∴Tn=(n+2)(12)n-2,6.已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.(1)令cn=anbn,求数列{cn}的通项公式;(2)若bn=3n-1,求数列{an}的前n项和Sn.解析(1)因为anbn+1-an+1bn+2bn+1bn=0,bn≠0(n∈N*),所以an+1bn+1-anbn=2,即cn+1-cn=2.(4分)所以数列{cn}是以首项c1=1,公差d=2的等差数列,故cn=2n-1.(2)由bn=3n-1,知an=cnbn=(2n-1)3n-1.于是数列{an}的前n项和Sn=1·30+3·31+5·32+…+(2n-1)·3n-1,3Sn=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,相减得-2Sn=1+2·(31+32+…+3n-1)-(2n-1)·3n=-2-(2n-2)3n.所以Sn=(n-1)3n+1.7.已知{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(1)求{an}的通项公式;(2)求数列an2n的前n项和.解析(1)方程x2-5x+6=0的两根为2,3,由题意得a2=2,a4=3设数列{an}的公差为d,则a4-a2=2d,故d=12,从而a1=32.所以{an}的通项公式为an=12n+1.(2)设an2n的前n项和为Sn,由(1)知an2n=n+22n+1,则Sn=322+423+…+n+12n+n+22n+1,12Sn=323+424+…+n+12n+1+n+22n+2.两式相减,得12Sn=34+(123+…+12n+1)-n+22n+2=34+14(1-12n-1)-n+22n+2.所以Sn=2-n+42n+1.8.已知{an}是各项均为正数的等比数列,且a1·a2=2,a3·a4=32.(1)求数列{an}的通项公式;(2)设数列{bn}满足b11+b23+b35+…+bn2n-1=an+1-1(n∈N*),求数列{bn}的前n项和.解析(1)设等比数列{an}的公比为q,由已知得a21q=2,a21q5=32.又∵a10,q0,∴a1=1,q=2.∴an=2n-1.(2)由题意,可得b11+b23+b35+…+bn2n-1=2n-1.∴2n-1-1+bn2n-1=2n-1(n≥2),bn2n-1=2n-1.∴bn=(2n-1)2n-1(n≥2).当n=1时,b1=1,符合上式,∴bn=(2n-1)·2n-1(n∈N*).设Tn=1+3×21+5×22+…+(2n-1)·2n-1,2Tn=1×2+3×22+5×23+…+(2n-3)·2n-1+(2n-1)·2n,两式相减,得-Tn=1+2(2+22+…+2n-1)-(2n-1)·2n=-(2n-3)·2n-3.∴Tn=(2n-3)2n+3.9.已知数列{an}是a3=164,公比q=14的等比数列.设bn+2=3log14an(n∈N*),数列{cn}满足cn=anbn.(1)求证:数列{bn}是等差数列;(2)求数列{cn}的前n项和Sn.解析(1)证明:由已知,可得an=a3qn-3=(14)n.则bn+2=3log14(14)n=3n,∴bn=3n-2.∵bn+1-bn=3,∴{bn}为等差数列.(2)由(1)知cn=anbn=(3n-2)(14)n,∴Sn=1×14+4×(14)2+7×(14)3+…+(3n-2)×(14)n,①14Sn=1×(14)2+4×(14)3+7×(14)4+…+(3n-5)×(14)n+(3n-2)×(14)n+1.②①-②,得34Sn=14+3[(14)2+(14)3+(14)4+…+(14)n]-(3n-2)·(14)n+1=14+3·142[1-14n-1]1-14-(3n-2)·(14)n+1=12-(3n+2)·(14)n+1.∴Sn=23-3n+23·(14)n.