1井田地质条件本章主要介绍井田的地理概况以及井田煤系地层、开采赋存条件、地质构造及水文地质条件、煤层赋存安全特性等概况。1.1井田概况1)地理条件岽山煤矿位于河北省唐山市北偏东约12km处,南距马家沟矿6km,距原京山铁路开平车站19km,东距陡河发电厂5.5km。行政区域属唐山市开平区管辖。本区为一平坦的冲积平原,东南面沿陡河东岸是由奥陶纪石灰岩构成的东北—西南方向起伏伸展的低山丘陵。从东往西有巍山(+290m)、凤山(+180m)、小梁山(+100m)和菀豆山(+38m),由菀豆山向西南倾没于平原之下。由巍山向东北低山丘陵接连绵延,地势逐渐增高,直到青龙山标高达+493.01m。在井田北约7km为由震旦纪灰岩构成的低山丘陵,东西方向横伏,这两条低山丘陵在井田东面的青龙山一带相汇合。低山丘陵的伸展方向与地层走向方向一致。井田内地势平坦,但北部稍高,向南低下,北部地面标高为+38.8m,南端标高为+23.85m,倾向陡河。2)地形地貌流经本区东南边的陡河,发源于北部山区,上游由二支汇成,东支称管河,发源于丰润县福山寺管泉,西支称泉水河,发源于丰润县赵庄上水路。二支水流在双桥村北侧汇合,向南流经唐山市区,下游汇集石榴河,向南流入渤海。河北省水利厅于1965年在双桥村一带修建了陡河水库,水库大坝距井田东端的最近距离为2200m。陡河及陡河水库虽然距井田区较近,但是因其底下均赋存有百余米的第四纪松散沉积物,而且存在有隔水作用的粘土层,对本矿充水没有直接的影响。3)气象及条件岽山煤矿气候属半大陆性,夏季炎热多雨,冬季严寒凛烈,气温变化较大。降水一般集中在七、八、九月份。气象资料统计:年降水量最大值为899.6mm(1987年),最小值为317.45mm(1997年),平均值为596.85mm。最大冻土深度0.5m,年降雨量一般520-680mm,年蒸发量1670mm,春冬季节多西北风,夏秋季节多东南风,一般风力3-4级,最大风力6级。4)矿井其他概况(矿井安全特性)1995年开始建矿,采用冻结凿井法进行冲积层的凿掘与砌筑,当凿至188.55m时(煤5顶板中粗粒砂岩),涌水量达到每小时258m³,由于涌水水源、途径及充水的其它因素不清,1998年对原精查地质报告进行了复审,重新评价了地质资料的成就与不足,1999年停建,2000年进行补充勘探工作,对水文地质情况基本查清。矿井设计能力为年产90万吨—不要写这些设计的内容,况且与你第二章的矿井生产能力相矛盾。矿井开拓方式为中央竖井水平方式,第一水平标高为--195m,以中央石门为主巷,分东翼和西翼,在煤层底板砂岩中各开拓两条大巷,分别为轨道运输巷和皮带运输巷。采掘方式为大巷盘区和集中上山开采,目前井田共分两个采区,即:东翼采区、西翼采区。本矿井为高瓦斯矿井,并有煤尘爆炸危险。相对涌出量为:10m³/t,绝对涌出量为25m³/min;二氧化碳相对涌出量为1.5~2.85m³/t,绝对涌出量为4.95~9.24m³/min。煤尘爆炸指数为38.42%~64.2%。矿井通风采用中央分列抽出式,由副井进风,回风井回风。介绍矿井在地质勘探阶段的煤层瓦斯含量、瓦斯压力、自然发火特性、煤层爆炸特性、矿井涌水等特性。1.2水文和地质条件井田地理为一向斜,煤系地层为石炭系和二叠系以及其他系组成,所含煤层中可供开采的煤层有2层,这些煤层上部都覆盖有厚度为100~380m的第四系冲积物。1.2.1矿井水文地质矿井最大涌水量为5.20m³/min,一般涌水量为3.73m³/min,至1998年底测得其涌水量为5.12m³/min。疏水中心排放的清水通过管路抽到地面供生活用水,其它质量低于清水质量的一些涌水排到-360m水仓通过有效的排水系统将这些涌水排至地面,以方便其灌溉农田,最后途经东翼塌陷坑进行沉淀,然后经过环游后通过后屯大渠将其流入陡河。岽山煤矿的水文地质条件属简单型,有三个含水层,自下而上分别为:1)奥陶系石灰岩岩溶裂隙承压含水层(Ⅰ)2)煤3以上砂岩裂隙承压含水层(Ⅱ)3)风化带裂隙、孔隙承压含水层(Ⅲ)其中与矿井生产较密切的为Ⅰ、Ⅱ。补给关系是:大气降水→Ⅰ、Ⅱ等各基岩含水层。矿井主要充水水源有:含水层水、断层水、老空水。(1)含水层水矿井含水层充水水源主要是煤3以上砂岩裂隙承压含水层水,含水层的水可通过岩石裂隙渗透到主大巷和工作面,对矿井正常生产造成一定影响。(2)断层水断层水作为充水水源主要是通过断层导通含水层水而形成的。断层的性质及围岩的破坏程度是断层充水的主要因素。张性正断层、落差大、围岩破坏严重便形成了良好的断层充水条件。(3)老空水由于煤层的开采方法和煤层本身的赋存状态不同,所以工作面回采后随着煤岩层垮落形成许多松散空隙,使工作面涌出的水积存在低洼的老空区内,形成老空水。在高处的工作面采后形成老空水对相邻低处的工作面产生影响。矿井充水通道有自然通道和人为因素造成的充水,自然通道主要是岩石的孔隙、裂痕和断层;而人为因素主要是采掘活动,因为采掘活动可使隔水层遭到破坏,产生冒落裂隙,沟通含水层水。矿井首采的2煤层,其顶板灰白色中粗粒砂岩为一隔水层,挡住了2煤层上方的顶板砂岩裂隙含水层水,由于采掘活动,灰白色中粗粒砂岩经常冒落,使隔水层遭破坏而导致上部含水层水下泄。1.2.2矿井地质构造1)地质构造岽山煤矿井田位于开平向斜的西北侧,南北长约1740m,东西宽约9000m,北端闭合,南端开放,面积约15.66km²。地质构造简单,向斜角平均为15°。只在井田四周有较大断层。2)煤系地层(1)地层层组划分岽山煤矿井田位于开平向斜西北侧,煤系地层的形成时代属于石炭纪和二叠纪。煤系基底地层为中奥陶统马家沟组石灰岩。本井田与开平煤田其它构造单元的地层特征基本相似。(2)石炭系上统(C3)赵各庄组C3,该组是岽山煤矿井田当中一个重要的含煤地层,本组含煤地层一般厚度为135m。本组含煤地层以粉砂岩为主,其次为砂岩,其中各种岩石所占百分比如下所示:粉砂岩类为38.3%,砂岩类为29.5%,煤层为17.4%,粘土岩为14.8%。岩相组合主要是泻湖海湾相和泥岩沼泽相相互交替沉积,同时在泻湖海湾相之后出现有湖滨三角洲相。(3)二叠系下统P1下界为煤5顶板之泥岩顶面,为整合接触。上界为矾土质粘土岩之顶板,井田内该层大部分被冲蚀掉。本统地层一般厚度为235.76m,分上下两组,上组称唐家庄组,下组称大苗庄组,其中大苗庄组是重要的含煤地层。本组一般厚度为90.36m,最小厚度为65m。本组地层以粉砂岩和砂岩为主,粘土岩也较多,岩石大致百分比为:粉砂岩类占36.2%,砂岩类占30.2%,粘土岩类占19.2%,煤占14.4%。岩相组合主要是泻湖海湾相、三角洲相及泥炭沼泽相沉积。在本组顶部出现了大陆河流冲积相沉积。(4)风化壳岩石特点:岩层显著变色,粘土岩和砂岩均变成浅黄色、灰白色或其它杂色;岩石硬度降低,产生风化裂隙,疏松易碎,裂隙中有黄色充填物;岩石矿物发生淋滤分解作用。在垂直方向上,区内风化壳具有分带性:上部强风化带和下部弱风化带。1.3煤层及煤质1.3.1概述井田煤系主要由石炭系上统和二叠系下统地层组成,煤系地层总厚度约150m,共含大小煤层2层,煤层总厚度7.44m,含煤系数为5.7%,其中可采煤层共2层。1.3.2可采煤层厚度、结构及变化1)煤1:为矿井的主采煤层,厚度为0.00~5.21m,平均厚度为3.8m,平均倾角为15°。煤层为黑色、条带状构造,玻璃光泽,以亮煤为主,间夹暗色条带,局部含丝炭,偶含黄铁矿膜,半亮~光亮型。2)煤2:为矿井的主采煤层,厚度为1.27~5.80m,平均厚度为3.6m,平均倾角为15°。煤层为黑色,块状构造,下部为条带状构造,质硬,玻璃光泽~暗淡光泽,半亮~半暗型,含夹石1~2层,最多达3层,为简单结构煤层,其中下部含一层分布极稳定的细砂岩夹矸,灰白色或浅灰色,条带状,致密坚硬,厚度0.02~0.78m,平均0.39m。煤层的容重为1.35t/m³。区内煤层厚度变化较大。(详见下表1-1)表1-1煤层地质特征表地层煤号煤层厚度最小—最大平均m煤层间距最小—最大平均m夹矸层数可采情况顶底板岩性顶板底板岽山煤矿10.00-5.213.816.3-50.833.550稳定粉砂质灰泥岩黑色泥岩21.27-5.803.61~2稳定灰黑色泥岩粉砂岩泥岩1.3.3煤质特性井田内共有可采煤层两层,煤1、煤2为稳定煤层。(下面怎么出现煤5和煤2?)1)煤的化学分析(1)硫份:各煤层全硫平均含量为0.25%~3.66%,其中煤5含量低于1%,属低硫煤;煤2含硫量最高为3.66%,平均为3.07%,属富硫煤,其所含硫量分为:黄铁矿硫占59%,有机硫占36%,硫酸盐硫占2.5%。(2)磷份:磷份平均含量最大0.0825%,最小0.008%,其中煤5为特低磷煤,煤2为中磷煤。(3)发热量:各可采煤层发热量变化范围在18.01~24.18MJ/kg之间,各煤层发热量由大至小为:煤2>煤5。一般情况是煤层灰分高的发热量低,而煤层灰分低的其发热量高。2)煤的工业用途评价井田内各煤层均属气煤类,结焦性能较差,块度小,抗碎性及抗磨性能较差,不适于单独炼焦,可以考虑作配焦用煤;煤的焦油含量较高,属富油煤~高油煤,发热量均在18.01~24.18MJ/Kg,主要为动力用煤1.3.4煤层顶底板特性1)煤2伪顶:暗灰色泥岩或粉砂岩,厚0~0.08m,随采随落,区内大部分缺失。直接顶:灰色粉砂岩,有明显水平层理或波状层理,块状,含有丰富的植物叶片化石,偶见浅褐色结核,厚度变化较大,极不稳定,厚0~3.86m,平均1.97m。老顶:灰白色中砂岩,夹粉砂岩,厚层状;岩石成分为石英及泥质岩屑,次为暗色燧石,并含有紫红色的矿物细粒;胶结物为高岭土质基底式胶结,占30%,极易风化,遇水澎涨,厚10.43~39.2m,平均12.00m。底板:灰黑色泥岩,致密块状,断口呈贝壳状或参差状,含菱铁质结核及黄铁矿散晶体,结核大小不一,扁球状成层状分布,含大量植物根化石,厚4.51~8.60m,平均6.44m。2)煤5直接顶:灰黑色泥岩,块状,致密细腻,贝壳状断口,含菱铁质透镜状结核及黄铁矿聚集体,含海相动物化石(在西翼曾采到完整的动物介壳化石)层厚3.96~9.47m,平均6.65m。老顶:浅灰色~灰白色细砂岩,块状,钙质基底式胶结,成分以石英为主,易风化,厚度不稳定,一般在0.65~8.23m之间,平均2.69m。直接底:灰~灰白色带褐色泥岩或粘土质粉砂岩,泥质胶结,块状构造,含大量植物根化石,厚0.53~3.87m,平均1.85m。1.3.5瓦斯、煤尘及煤的自燃倾向性(该处内容放入第一章-矿井安全特性)根据钻孔煤样和周围矿井生产实际调查分析,本矿煤层平均瓦斯相对涌出量10m³/t,绝对涌出量为25m³/min;二氧化碳相对涌出量为1.5~2.85m³/t,绝对涌出量为4.95~9.24m³/min。煤尘爆炸指数为38.42%~64.2%。属高瓦斯矿井。根据钻孔煤样和周围矿井生产实际调查分析,本矿井煤5煤尘有爆炸危险性外,煤2有自燃倾向性。本区属地温正常区,地温梯度0.6-2.9℃/hm,恒温带深45m左右。2井田开拓煤田划分为井田,是井田开拓所要解决的一个主要问题。本章主要内容为:进行井田再划分、矿井产能力的核定、设计开拓方式和煤层群开拓方式、阶段大巷井设计、井底车场设计等。2.1井田再划分2.1.1井田边界矿井井田范围:井田东西走向长9000m,南北倾斜宽1740m,井田面积15.66km²2.1.2矿井储量1)矿井工业储量计算矿井工业储量计算可用下式计算:Zg=41iSiLiMir(2-1)式中Zg—矿井工业储量,t;Si—计算块段的平均走向长度,m;Li—计算块段的平均倾斜长度,m;Mi—计算块段的平均煤厚,m;R—煤的容重,t/m³,经实测取1.32t/m³。故矿井工业储量为:Zg=41iSiLiMir=9000×1740×(3.8+3.6)×1.32=15379.37万t2)可采储量计算-改为矿井设计储量矿井可