水银电解法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

水银电解法-正文一种电解方法,利用流动的水银层作为阴极,在直流电作用下使电解质溶液的阳离子成为金属析出,与水银形成汞齐,而与阳极的产物分开。在氯碱工业中,利用水银电解槽电解食盐水溶液,生产高纯度烧碱(氢氧化钠)、氢气和氯气,首先于1897年在英国柴郡的朗科恩和美国实现工业化生产。水银电解槽工艺流程水银电解槽由电解器、解汞器和水银泵三部分组成(见图),形成水银和盐水两个环路。电解器为钢制带盖的沿纵向有一定倾斜度的长方形槽体,两端分别有槽头箱和槽尾箱,由分隔水银与盐水的液封隔板与槽体相连。槽体的底部为平滑的厚钢板,保证水银流动时不致裸露钢铁,钢板下面连接导电板。槽壁衬有耐腐蚀的硬橡胶或塑料的绝缘衬里。槽盖上有通过密封圈下垂的石墨阳极或金属阳极组件,露出槽外的阳极棒由软铜板连接阳极导电板,槽盖与槽体密闭。水银与精制的饱和盐水同时连续进入槽头箱,水银借重力形成流动的薄膜,覆盖整个槽底作为阴极。通入直流电时,盐水中的氯化钠被电解,由于水银阴极上氢的超压(又称过电压),远大于钠的超压,因而钠离子在阴极放电生成的金属钠立即与水银形成钠汞齐,溶在水银中从槽尾箱流出进入解汞器。氯离子在阳极上失去电子生成氯气泡,穿过盐水从槽盖上的氯气出口管引出。解汞后的水银流入水银贮槽,由水银泵送到电解器槽头箱,构成水银流动的环路。饱和食盐水溶液流经电解器,一部分氯化钠(约15%~16%)解离,剩余的溶有氯气的淡盐水流出槽外,经盐酸酸化后,在真空下或吹入空气脱氯,然后再用固体食盐重新饱和,制成精制盐水,重新使用,构成盐水流动环路。解汞器目前多采用立式,汞齐从器顶均匀流下,经石墨粒填料床与器底流入的纯水逆流接触,汞齐为阳极,石墨粒为阴极,两者接触短路,生成氢氧化钠和氢气。氢气经解汞器顶部冷却器冷却,以捕集大部分水银后再进一步精制。现代电解器均装有超负荷电极保护装置,由电子计算机控制,随时调整阳极的高低,使阴阳两极在最小的间距下运转而不致短路。特点①可在较高的电流密度下运转;②不需蒸发,直接生产50%或73%人造丝级高纯度烧碱(含氯化钠在50ppm以下);③电耗较高;④需用固体食盐作原料;⑤汞的流失会造成环境污染。现代水银电解槽一般在8000~15000A/m2电流密度下运转,最大电流负荷达450kA。电流效率为96%~98%;汞齐含钠量为0.2%~0.5%(质量)。淡盐水的浓度为260g/l左右。水银电解法要求高纯度的盐水,杂质中镁(最大1.0ppm)、钙(最大10ppm)和铁(最大0.1ppm)的含量均应严格控制,重金属钒、钼、钛、锰、钨等的总量应小于0.01ppm,以防止产生不易流动的高汞齐(或称汞渣)。若阴极水银薄层破裂,则裸露的钢底板上会生成氢氧化钠并放出氢气,与阳极生成氯气构成爆炸混合物。水银法氯碱厂多数以精制盐作原料。有的氯碱厂既有隔膜法生产装置,又有水银法生产装置,特点是利用隔膜法碱液蒸发器分离出来的优质回收盐,供水银法使用。除汞措施水银电解法生产的产品氢氧化钠与氢气以及排出的废气、废水、废渣中均有少量水银,为了减少流失,避免污染环境,通常采取以下除汞措施:①解汞器出来的氢气经冷却,再经螯合树脂吸附,氢气中汞含量约可降低到1μg/m3以下。②氢氧化钠溶液中的水银微粒经活性炭层的两级过滤处理,汞含量降到0.01ppm以下。③含汞废气在填充塔内,用含有游离氯的盐水喷淋,使气流中挟带的汞形成络合物而被除去,必要时再经螯合树脂处理,直到合格后排空。④含汞废水闭路循环,根据清洁程度分别用于分解钠汞齐或溶盐。必须外排的含汞污水用螯合树脂与活性炭吸附净化。⑤淡盐水脱氯时,保留一定量的游离氯,防止淡盐水中的水银形成不溶物而混入盐泥。⑥含汞的废橡胶、解汞器内失效的石墨粒、螯合树脂以及含汞污泥等固体物,均经次氯酸钠溶液萃取,使所含水银成为可溶状态的络合物加以回收;剩余的含汞固体物有时再经干馏回收水银,或加入水泥和硫化钠制成不溶性块体。经过除汞措施,生产每吨氢氧化钠耗汞量约在4g以下,符合环境保护条例的要求。现状和展望水银电解法具有一定的优点。80年代初,水银电解法在世界氯碱工业生产能力中约占42%。现有的水银法氯碱装置,大多数在积极控制水银流失的条件下继续采用,一部分则将改造为离子交换膜法装置。新建的氯碱厂一般不再采用此法。日本政府于1986年6月前全部转换为其他方法。氯碱工业工业上用电解饱和NaCl溶液的方法来制取NaOH、Cl2和H2,并以它们为原料生产一系列化工产品,称为氯碱工业。氯碱工业是最基本的化学工业之一,它的产品除应用于化学工业本身外,还广泛应用于轻工业、纺织工业、冶金工业、石油化学工业以及公用事业。一、电解饱和食盐水反应原理电解饱和食盐水的原理与前面学过的电解CuCl2溶液的原理是相类似的。【实验3】在U型管里装入饱和食盐水,用一根碳棒作阳极,一根铁棒作阴极(如右图)。同时在两边管中各滴入几滴酚酞试液,并把湿润的碘化钾淀粉试纸放在阳极附近。接通直流电源后,注意观察管内发生的现象及试纸颜色的变化。从实验可以看到,在U型管的两个电极上都有气体放出。阳极放出的气体有刺激性气味,并且能使湿润的碘化钾淀粉试纸变蓝,说明放出的是Cl2;阴极放出的气体是H2,同时发现阴极附近溶液变红,这说明溶液里有碱性物质生成。为什么会出现这些实验现象呢?这是因为NaCl是强电解质,在溶液里完全电离,水是弱电解质,也微弱电离,因此在溶液中存在Na+、H+、Cl-、OH-四种离子。当接通直流电源后,带负电的OH-和Cl-向阳极移动,带正电的Na+和H+向阴极移动。在这样的电解条件下,Cl-比OH-更易失去电子,在阳极被氧化成氯原子,氯原子结合成氯分子放出,使湿润的碘化钾淀粉试纸变蓝。阳极反应:2Cl--2e-=Cl2↑(氧化反应)H+比Na+容易得到电子,因而H+不断地从阴极获得电子被还原为氢原子,并结合成氢分子从阴极放出。阴极反应:2H++2e-=H2↑(还原反应)在上述反应中,H+是由水的电离生成的,由于H+在阴极上不断得到电子而生成H2放出,破坏了附近的水的电离平衡,水分子继续电离出H+和OH-,H+又不断得到电子变成H2,结果在阴极区溶液里OH-的浓度相对地增大,使酚酞试液变红。因此,电解饱和食盐水的总反应可以表示为:总反应2NaCl+2H2O=2NaOH+Cl2+H2工业上利用这一反应原理,制取烧碱、氯气和氢气。在上面的电解饱和食盐水的实验中,电解产物之间能够发生化学反应,如NaOH溶液和Cl2能反应生成NaClO、H2和Cl2混合遇火能发生爆炸。在工业生产中,要避免这几种产物混合,常使反应在特殊的电解槽中进行。二、离子交换膜法制烧碱目前世界上比较先进的电解制碱技术是离子交换膜法。这一技术在20世纪50年代开始研究,80年代开始工业化生产。离子交换膜电解槽主要由阳极、阴极、离子交换膜、电解槽框和导电铜棒等组成,每台电解槽由若干个单元槽串联或并联组成。右图表示的是一个单元槽的示意图。电解槽的阳极用金属钛网制成,为了延长电极使用寿命和提高电解效率,钛阳极网上涂有钛、钌等氧化物涂层;阴极由碳钢网制成,上面涂有镍涂层;阳离子交换膜把电解槽隔成阴极室和阳极室。阳离子交换膜有一种特殊的性质,即它只允许阳离子通过,而阻止阴离子和气体通过,也就是说只允许Na+通过,而Cl-、OH-和气体则不能通过。这样既能防止阴极产生的H2和阳极产生的Cl2相混合而引起爆炸,又能避免Cl2和NaOH溶液作用生成NaClO而影响烧碱的质量。下图是一台离子交换膜电解槽(包括16个单元槽)。精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴极室。通电时,H2O在阴极表面放电生成H2,Na+穿过离子膜由阳极室进入阴极室,导出的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl2。电解后的淡盐水从阳极导出,可重新用于配制食盐水。离子交换膜法电解制碱的主要生产流程可以简单表示如下图所示:电解法制碱的主要原料是饱和食盐水,由于粗盐水中含有泥沙、精制食盐水时经常加入Na2CO3、NaOH、BaCl2等,使杂质成为沉淀过滤除去,然后加入盐酸调节盐水的pH。例如:加入Na2CO3溶液以除去Ca2+:加入NaOH溶液以除去Mg2+、Fe3+等:Mg2++2OH-=Mg(OH)2↓Fe3++3OH-=Fe(OH)3↓以除去过量的Ba2+:这样处理后的盐水仍含有一些Ca2+、Mg2+等金属离子,由于这些阳离子在碱性环境中会生成沉淀,损坏离子交换膜,因此该盐水还需送入阳离子交换塔,进一步通过阳离子交换树脂除去Ca2+、Mg2+等。这时的精制盐水就可以送往电解槽中进行电解了。离子交换膜法制碱技术,具有设备占地面积小、能连续生产、生产能力大、产品质量高、能适应电流波动、能耗低、污染小等优点,是氯碱工业发展的方向。三、以氯碱工业为基础的化工生产NaOH、Cl2和H2都是重要的化工生产原料,可以进一步加工成多种化工产品,广泛用于各工业。所以氯碱工业及相关产品几乎涉及国民经济及人民生活的各个领域。由电解槽流出的阴极液中含有30%的NaOH,称为液碱,液碱经蒸发、结晶可以得到固碱。阴极区的另一产物湿氢气经冷却、洗涤、压缩后被送往氢气贮柜。阳极区产物湿氯气经冷却、干燥、净化、压缩后可得到液氯。2NaOH+Cl2=NaCl+NaClO+H2OH2O+Cl2=HCl+HClOH2+Cl2=2HCl2NaOH+CO2=Na2CO3(苏打)+H2ONaOH+CO2=NaHCO3(小苏打)随着人们环境保护意识的增强,对以氯碱工业为基础的化工生产过程中所造成的污染及其产品对环境造成的影响越来越重视。例如,现已查明某些有机氯溶剂有致癌作用,氟氯烃会破坏臭氧层等,因此已停止生产某些有机氯产品。我们在充分发挥氯碱工业及以氯碱工业为基础的化工生产在国民经济发展中的作用的同时,应尽量减小其对环境的不利影响。我国氯碱工业的发展我国最早的氯碱工厂是1930年投产的上海天原电化厂(现上海天原化工厂的前身),日产烧碱2t。到1949年解放时,全国只有少数几家氯碱厂,烧碱年产量仅1.5万吨,氯产品只有盐酸、液氯、漂白粉等几种。近年来,我国的氯碱工业在产量、质量、品种、生产技术等方面都得到很大发展。到1990年,烧碱产量达331万吨,仅次于美国和日本,位于世界第三位。1995年,烧碱产量达496万吨,其中用离子交换膜电解法生产的达56.2万吨,占总产量的11.3%。预计到2000年,烧碱年产量将达540万吨,其中用离子膜电解法生产的将达180万吨,占33.3%。氯碱工业利用电解饱和食盐水溶液制取烧碱(氢氧化钠)和氯气并副产氢气的生产过程。过程包括盐水精制、电解和产品精制等工序,其中主要工序是电解。工业上采用隔膜电解法、水银电解法和离子膜电解法。各法所采用的电解槽结构不同,因而其具体工艺流程及产品规格也有所不同。当前应用较多的是隔膜电解法。盐水精制海盐、岩盐、湖盐等固体原盐(NaCl)都是生产氯气和烧碱的原料。为使电解过程顺利进行并保证设备、操作的安全,无论采用哪种电解方法,原料都必须精制。固体盐溶于水中所得的饱和盐水,或来自地下盐井的盐水,在60℃左右加入碳酸钠、氢氧化钠,使其与盐水中的钙、镁杂质反应生成碳酸钙、氢氧化镁等沉淀。盐水中硫酸盐过高时,还需加入氯化钡(或碳酸钡)以生成硫酸钡沉淀。各种沉淀物经过絮凝、澄清、过滤分离后,清盐水加入盐酸调节pH使之成为中性或微酸性,再通过精制的(或回收的)固体盐层重新饱和,并加热到60~80℃,成为一次精制盐水,可供隔膜法或水银法使用。有的盐水中含有铵离子或有机氮化合物,将在隔膜电槽内生成三氯化氮(NCL),当氯气液化时,三氯化氮积累过多会引起爆炸,故应在饱和盐水中加入少量的次氯酸盐,使转变为可挥发的一氯胺(HNCl)。精制盐水中含有10~15ppm的有效氯,会使氨含量降低到1ppm的安全范围之内。将一次精制盐水再经过滤和螯合树脂吸附,进行二次精制,控制钙、镁含量在0.05ppm以下,才能用于离子膜电槽。电解隔膜法、水银法、离子膜法的电解原理基本相同,即:食盐水溶液在直流电作用下,阴离子在阳极上发生氧化反应

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功