苏教版八年级数学全册知识点总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1八年级数学全册知识点总结上册第一章轴对称图形1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。联系:①两部分都完全重合,都有对称轴,都有对称点。②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。轴对称轴对称的性质轴对称图形线段角等腰三角形DBA等腰三角形轴对称的应用等腰梯形设计轴对称图案lAB2------线段、角的轴对称性1.线段的轴对称性:①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。②线段的垂直平分线上的点到线段两端的距离相等。③到线段两端距离相等的点,在这条线段的垂直平分线上。结论:线段的垂直平分线是到线段两端距离相等的点的集合2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。②角平分线上的点到角的两边距离相等。③到角的两边距离相等的点,在这个角的平分线上。结论:角的平分线是到角的两边距离相等的点的集合--------等腰三角形的轴对称性1.等腰三角形的性质:①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;②等腰三角形的两个底角相等;(简称“等边对等角”)③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(简称“三线合一”)2.等腰三角形的判定:①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”)②直角三角形斜边上的中线等于斜边上的一半。3.等边三角形:①等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形。②等边三角形的性质:等边三角形是轴对称图形,并且有3条对称轴;等边三角形的每个角都等于600。③等边三角形的判定:3个角相等的三角形是等边三角形;有两个角等于600的三角形是等边三角形;有一个角等于600的等腰三角形是等边三角形。4.三角形的分类:斜三角形:三边都不相等的三角形。三角形只有两边相等的三角形。等腰三角形等边三角形----------等腰梯形的轴对称性1.等腰梯形的定义:①梯形的定义:一组对边平行,另一组对边不平行为梯形。梯形中,平行的一组对边称为底,不平行的一组对边称为腰。③等腰梯形的定义:两腰相等的梯形叫做等腰梯形。2.等腰梯形的性质:①等腰梯形是轴对称图形,是两底中点的连线所在的直线。BACEDOPlABMADCB3②等腰梯形同一底上两底角相等。③等腰梯形的对角线相等。3.等腰梯形的判定:④在同一底上的2个底角相等的梯形是等腰梯形。⑤补充:对角线相等的梯形是等腰梯形。第二章勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即222cba2、勾股定理的逆定理如果三角形的三边长a,b,c有关系222cba,那么这个三角形是直角三角形。3、勾股数:满足222cba的三个正整数,称为勾股数。二、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。表示方法:记作“a”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。表示方法:正数a的平方根记做“a”,读作“正、负根号a”。4性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。0a注意a的双重非负性:a03、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:33aa,这说明三次根号内的负号可以移到根号外面。四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,,0baba,0babababa0(3)求商比较法:设a、b是两正实数,;1;1;1babababababa(4)绝对值比较法:设a、b是两负实数,则baba。(5)平方法:设a、b是两负实数,则baba22。五、实数的运算(1)六种运算:加、减、乘、除、乘方、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律加法交换律abba加法结合律)()(cbacba乘法交换律baab乘法结合律)()(bcacab乘法对加法的分配律acabcba)(5第三章中心对称图形(一)一、平移1、定义在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。2、性质平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。二、旋转1、定义在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。2、性质旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。三、四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。推论:多边形的内角和定理:n边形的内角和等于)2(n180°;多边形的外角和定理:任意多边形的外角和等于360°。6、设多边形的边数为n,则多边形的对角线共有2)3(nn条。从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。四.平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。2、平行四边形的性质(1)平行四边形的对边平行且相等。(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。(4)平行四边形是中心对称图形,对称中心是对角线的交点。常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。(2)推论:夹在两条平行线间的平行线段相等。3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形6(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。5、平行四边形的面积S平行四边形=底边长×高=ah五、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab六、菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半七.正方形1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2、正方形的性质(1)正方形四条边都相等,对边平行(2)正方形的四个角都是直角(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角7(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。3、正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。4、正方形的面积设正方形边长为a,对角线长为bS正方形=222ba八、梯形(一)1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。(2)一组对边平行且不相等的四边形是梯形。(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形梯形直角梯形特殊梯形等腰梯形(三)等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。(3)等腰梯形的对角线相等。(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)(四)梯形的面积(1)如图,DEABCDSABCD)(21梯形(2)梯形中有关图形的面积:①BACABDSS;8②BOCAODSS;③BCDADCSS八、中心对称图形1、定义在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。2、性质(1)关于中心对称的两个图形是全等形。(2)关于中心对称的两个图形,对称

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功