69第十一章生物药剂学与药物动力学第一节、生物药剂学概述一、生物药剂学的概念(一)生物药剂学(Biopharmaceutics)是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素、机体的生物因素与药效(包括疗效、副作用和毒性)之间关系的一门药剂学分支学科。生物药剂学中研究的剂型因素,不仅是指片剂、注射剂、软膏剂等狭义的剂型,而是广义地包括与剂型有关的各种因素,主要有:①药物的某些化学性质②药物的某些物理性质③药物制剂的处方组成、药物的剂型及用药方法④药物的剂型及用药方法⑤制剂的工艺过程。(二)生物膜的结构体内具有吸收功能的主要组织为上皮组织,它是由上皮细胞组成的,上皮细胞膜是一种生物膜,其构造和性质决定药物吸收的难易程度。在生物膜内,蛋白质与类脂质(主要是磷脂)呈聚集状态,类脂质构成双分子层。(三)药物通过生物膜的转运机理1、被动扩散(passivediffusion)被动扩散的特点是:从高浓度区(吸收部位)向低浓度区域(血液)顺浓度梯度转运,转运速度与膜两侧的浓度差成正比。扩散过程不需要载体,也不消耗能量,故也称为单纯扩散。膜对通过的物质无特殊选择性,即无饱和现象和竞争抑制现象,一般也无部位特异性。药物大多数以这种方式吸收。被动扩散有二条途径:①溶解扩散;②限制扩散。2、主动转运(activetransport)一些生命必需物质(如K+,Na+,I-,单糖,氨基酸,水溶性维生素)和有机酸、碱等弱电解质的离子型等。主动转运有如下特点:①逆浓度梯度转运;②需要消耗机体能量,能量的来源主要由细胞代谢产生的ATP提供;③主动转运药物的吸收速度与载体数量有关,可出现饱和现象;④可与结构类似的物质发生竞争现象;⑤受代谢抑制剂的影响,⑥主动转运有结构特异性,如单糖、氨基酸、嘧啶及某些维生素都有本身独立的主动转运特性;⑦主动转运还有部位特异性。3、促进扩散(facilitateddiffusion)促进扩散又称中介转运(meadiatedtransport)或易化扩散,由膜的高浓度一侧向低浓度一侧扩散或转运的过程。促进扩散具有载体转运的各种特征:有饱和现象,与被动扩散不同之处在于:促进扩散不消耗能量,而且是顺浓度梯度转运,转运的速率大大超过被动扩散。4、胞饮作用胞饮作用是细胞摄取药物的另一种形式,主动变形而将某些物质摄入细胞内或从细胞内释放到细胞外,称为胞饮。某些高分子物质,如蛋白质、多肽类、脂溶性维生素和重金属等,可按胞饮方式吸收。二、药物的胃肠道吸收及其影响因素(一)药物在胃肠道的吸收吸收(absorption)是指药物从给药部位进入体循环的过程。(例如静脉注射给药)不涉及吸收过程以外,非血管内给药等都存在吸收过程。药物在胃中的吸收机制主要是被动扩散。小肠中药物的吸收以被动扩散为主。是直肠给药(如栓剂)的良好吸收部位。大70肠中药物的吸收也以被动扩散为主。(二)影响药物在胃肠道吸收的生理因素1、胃肠液成分与性质对吸收的影响胃液pH变化,可使弱酸性药物在胃中吸收发生变化。药物吸收部位的pH值对很多药物,特别是有机弱酸或弱碱类药物的吸收至关重要。2、胃排空对吸收的影响(1)胃排空速率胃排空速率表观为一级速度过程:影响胃排空速率的因素很多,与内容物的物理性状和化学组成有关。胃排空的快慢,对药物消化道中的吸收有一定影响。由于大多数药物在小肠中吸收好,胃排空加快,药物到达小肠部位时间缩短,吸收快,生物利用度提高,出现药效时间也快。3、胃肠道蠕动对吸收的影响胃蠕动可使食物与药物充分混合,有利于胃中药物的吸收,小肠的固有运动可促进固体制剂的进一步崩解,使之与肠液充分混合溶解,增加药物与吸收黏膜表面的接触,有利于药物的吸收。4、循环系统对吸收的影响循环系统的循环途径的流量的大小都对药物吸收及血药浓度产生影响。在胃、小肠和大肠吸收的药物都经门静脉进入肝脏。肝脏中丰富的酶系统对经过的药物具有强烈的代谢作用,所谓的药物“首过作用”,药物的首过作用愈大,药物被代射的越多,其有效血药浓度下降也愈大,药效受到明显的影响。5、食物对吸收的影响食物通常能够减慢药物的胃排空速率,故主要在小肠吸收的药物多半会推迟吸收;当食物中含有较多脂肪时,由于能够促进胆汁分泌,增加血液循环,特别是能增加淋巴液的流速,有时对溶解度制别小的药物如灰黄霉素能增加其吸收量。(三)影响药物在胃肠道吸收的剂型因素1、药物的解离度、脂溶性等理化性质对吸收的影响未解离型的有机弱酸和有机弱碱由于脂溶性较大,比脂溶性小的解离型药物易吸收,由于非解离型和解离型的比例与环境的pH直接相关。同时,脂溶性又与药物的油/水分配系数有关。弱酸性药物在胃中主要以未解离型形式存在,吸收较好,而弱碱性药物在pH较高的小肠中更有利用吸收。除了强碱性药物外,药物在胃中的吸收与pH分配假说相当一致。但是在药物的主要吸收部位小肠中,药物的吸收不一定与pH人配假说相吻合2、药物的溶出速度对吸收的影响固体剂型如片剂、丸剂、胶囊剂等口服时,必须先经过崩解、释放、溶解后,才可能被上皮细胞膜吸收。尤其对难溶性药物或溶出速度很慢的药物及其制剂,药物从固体制剂中的释放溶出很慢,其溶出过程往往成为吸收过程的限速阶段,溶出速度的理论依据是Noyes-Whitney的扩散理论,按下列方程式表示:药物的溶出速度与S(即药物的表面积)、Cs(即药物的溶解度)和K(即溶出速率常数)成正比。故对于溶解度小的药物制成的片剂或其他固体剂型,各国药典常规定测定溶出速度,作为体外控制质量的方法之一。(1)粒子大小对药物溶出速度的影响药物粒子越小,与体液的接触面积越大,药物的溶解速度就会越大。为达到增加某些难溶性药物的溶解速度和吸收的目的,可采用药物微粉化技术,还可采用固体分散体技术和控制结晶法制备微晶。在胃液中不稳定的药物如青霉素、红霉素等、对胃肠刺激性强的药物如呋喃啶等,不宜采用微粉化技术制备制剂。(2)多晶型对药物溶出速度的影响各种晶型往往具有不同的物理性质如密度、熔点、71溶解度、溶出速率等,它们的生物活性和稳定性也有所不同。(3)溶剂化物对药物溶出速度的影响一般溶出速率大小顺序为:有机溶剂化物无水物水合物。(4)成盐对药物溶出速度的影响难溶性的弱酸制成钾盐或钠盐、难溶性弱碱制成盐酸盐或其它强酸盐后,由于溶解度增加,能够在胃肠液中迅速溶解,可使制剂的溶出速度增大,生物利用度提高.3、药物在胃肠道中的稳定性对吸收的影响某些药物由于胃肠道pH、消化道中的细菌以及消化道内皮细胞产生的酶的作用,往往会降解或失活而不能口服给药,只能采用注射或其他途径给药。4、药物的具体剂型、给药途径对吸收的影响剂型是药物应用的必要形式,药物的药理作用必须通过剂型才能发挥效用。同一药物经加工制成不同的剂型后,往往可以呈现不同的效应,如药物的起效时间、作用强度、作用部位及持续时间、毒副作用等。由于剂型不同,用药部位及给药途径不同,可以影响到药物在体内的吸收、分布、代谢及排泄过程,从而影响到药理效应。一般认为在口服剂型中,药物的吸收顺序大致为:水溶液混悬液散剂胶囊剂片剂包衣片剂。三、药物的非胃肠道吸收(一)注射部位吸收注射部位周围一般有丰富的血液和淋巴循环。药物吸收路径短,影响因素少,故一般注射给药吸收速度快,生物利用率比较高。如难溶性药物采用非水溶剂、药物混悬液等,注射后在局部组织形成贮库,缓慢释放。皮下与皮内注射时由于皮下组织血管少,血流速度低,药物吸收较肌肉注射慢,甚至比口服慢。需延长药物作用时间进可采用皮下注射。皮内注射吸收差。药物从注射剂中的释放速率是药物吸收的限速因素,各种注射剂中药物的释放速率排序为:水溶液水混悬液油溶液O/W乳剂W/O乳剂油混悬液。(二)肺部吸收巨大的肺泡表面积、丰富的毛细血管和极小的转运距离,决定了肺部给药的迅速吸收,而且吸收后的药物直接进入血液循环,不受肝脏首过效应影响。气雾剂或吸入剂给药时,药物粒子大小影响药物到达的部位,大于10μm的粒子沉积于气管中,2~10μm的粒子到达支气管与细支气管,2~3μm的粒子可到达肺部,(三)鼻黏膜吸收鼻黏膜给药被认为是较理想的取代注射给药的全身给药途径。其优点有:①鼻黏膜内的丰富血管和鼻黏膜的高度渗透性有利于全身吸收;②可避开肝脏的首过作用、消化酶的代谢和药物在胃肠液中的降解;③吸收程度和速度有时可与静脉注射相当;④鼻腔内给药方便易行。(四)口腔黏膜吸收流经口腔黏膜的血液经舌静脉、面静脉和后腭静脉进入颈内静脉,可绕过肝脏的首过作用。口腔黏膜作为全身用药途径主要指颊黏膜吸收和舌下黏膜吸收。舌下黏膜渗透能力强,药物吸收迅速,给药方便,许多口服首过作用强或在胃肠道中易隆解的药物,舌下给药生物利用度显著提高。(五)阴道黏膜吸收药物通过阴道黏膜以被动扩散透过细胞膜的脂质通道为主72第二节药物动力学一、药物动力学的概念药物动力学(Pharmcokinetics)是研究药物体内药量随时间变化规律的科学。药物动力学对指导新药设计,优化给药方案,改进剂型,提供高效、速效(或缓释)、低毒(或低副作用)的药物制剂,已经发挥了重大作用。二、血药浓度与药理作用的关系因为大多数药物的血药浓度与药理效应间呈平行关系,所以研究血药浓度的变化规律对了解药理作用强度的变化极为重要,这是药物动力学研究的中心问题。三、几个重要的基本概念(一)隔室模型药物的体内过程一般包括吸收、分布、代谢(生物转化)和排泄过程。为了定量地研究药物在上述过程中的变化情况,用数学方法模拟药物体内过程而建立起来的数学模型,称为药物动力学模型。药物在体内的转运可看成是药物在隔室间的转运,这种理论称为隔室模型理论。隔室的概念比较抽象,无生理学和解剖学的意义。但隔室的划分也不是随意的,而是根据组织、器官、血液供应多数和药物分布转运速度的快慢而确定的。1、单隔室模型即药物进入体循环后,迅速地分布于各个组织、器官和体液中,并立即达到分布上的动态平衡,成为动力学上的所谓“均一”状态,因而称为单隔室模型或单室模型。2、二隔室模型二隔室模型是把机体看成药物分布速度不同的两个单元组成的体系,一个单元称为中央室,另一个单元称为周边室。中央室是由血液和血流非常丰富的组织、器官等所组成,药物在血液与这些组织间的分布声速达到分布上的平衡;周边室(外室)是由血液供应不丰富的组织、器官等组成,体内药物向这些组织的分布较慢,需要较长时间才能达到分布上的平衡。3、多隔室模型二隔室以上的模型叫多隔室模型,它把机体看成药物分布速度不同的多个单元组成的体系。(二)消除速度常数消除是指体内药物不可逆失去的过程,它主要包括代谢和排泄。其速度与药量之间的比便常数K称为表观一级消除速度常数,简称消除速度常数,其单位为时间的倒数,K值大小可衡量药物从体内消除的快与慢。药物从体内消除途径有:肝脏代谢、肾脏排泄、胆汁排泄及肺部呼吸排泄等,所以药物消除速度常数K等于各代谢和排泄过程的速度常数之和,即:K=Kb+Ke+Kbi+Klu+……消除速度常数具有加和性,所以可根据各个途径的速度常数与K的比值,求得各个途径消除药物的分数。(三)生物半衰期生物半衰期(Half-lifetime)简称半衰期,即体内药量或血药浓度下降一半所需要的时间,以t1/2表示,单位为时间。药物的生物半衰期与消除速度常数之间的关系为:因此,t1/2也是衡量药物消除速度快慢的重要参数之一。药物的生物半衰期长,表示它在体内消除慢、滞留时间长。根据半衰期的长短,一般可将药物分为:t1/21小时,称为极短半衰期药物;t1/2在1~4小时,称为短半衰期药物;t1/2在4~8小时,称为中等半衰期药物;t1/2在8~24小时,称为长半衰期药物;t1/224小时,称为极长半衰期药物。73(四)清除率整个机体(或机体内某些消除器官、组织)的药物消除率,是指机体(或机体内某些消除器官、组织)在单位时间内消除掉相当于多少体积的流经血液中的药物。Cl=(-dX-dt)/C=KV从这个公式可知,机体(或消除器官)药物的清除率是消除速度常数与分布容积的乘积,所以清除率Cl这个参数综合包括了速度与容积两种要素。同时它又具有明确的