1过程控制系统课程设计题目:液位流量串级控制系统2目录第一章概述························································································41.1本课程设计的研究意义···········································································41.2本课程设计的目的和内容········································································4第二章系统结构的控制方案··········································································52.1控制系统在世界应用中的重要意义····························································52.2系统结构设计·······················································································52.3控制系统的总体方框图及工作过程····························································62.3.1被控对象的分析·············································································6第三章PID参数整定·················································································73.1控制规律的比较与选择···········································································83.1.1常见控制规律的类型及优缺点的比较······················································8第四章设备的选型·····················································································114.1液位传感器·························································································114.2电磁流量传感器···················································································114.3电动调节阀·························································································114.5变频器·······························································································124.6模块选择····························································································124.7适合本系统的检测转换元件····································································124.8液位检测转换元件················································································134.9执行元件的选择性能参数·······································································13第五章系统仿真和结果分析·········································································14第六章实际控制系统的运行与调试································································156.1实际控制系统的组成的动态运行图···························································156.2实际控制系统的运行调试方法·································································156.3实际控制系统的调试步骤·······································································176.4运行调试中的问题及解决方法·································································183第一章概述1.1本课程设计课题研究的意义随着现代工业生产过程向着大型、连续和强化方向发展,对控制系统的控制品质提出了日益增长的要求。在这种情况下,简单的单回路控制已经难以满足一些复杂的控制要求。在单回路控制方案基础上提出的串级控制方案,则对提高过程控制的品质有极为明显的效果。串级控制系统具有单回路控制系统的全部功能,而且还具有许多单回路控制系统所没有的优点。因此,串级控制系统的控制质量一般都比单回路控制系统好,而且串级控制系统利用一般常规仪表就能够实现,所以,串级控制是一种易于实现且效果又较好的控制方法。本课程设计课题讨论了一个简单的液位流量串级控制系统的设计方法及步骤。液位和流量是工业生产过程中最常用的两个测控参数,因此本课程设计课题具有较大的现实意义。1.2本论文的目的和内容1.2.1目的通过课程设计,加深对所学传感器技术、转换技术、电子技术、自动控制原理以及过程控制的基本原理、基本知识的理解和应用,掌握串级控制系统的设计步骤和方法,掌握工程整定参数方法,培养创新意识,增强动手能力,为今后工作打下一定的理论和实践基础。1.2.2内容一、题目:液位流量串级控制系统4二、设计指标:液位在0~500mm内给定一个值,<5%,稳定时间<300s,稳态误差≤∣±2mm∣。三、主要任务:以严谨的态度对待课程设计,认真复习有关基础理论和技术知识,认真查阅参考资料,仔细分析被控对象的工作原理、特性以及控制要求。能在指导老师的帮助下解决设计中的各种问题,按计划完成课程设计各阶段的任务,使设计的系统的各项指标达到要求。重视理论与实际结合,并以积极、认真的态度参加课程设计答辩。第二章系统的控制方案2.1控制系统在实际应用中的重要意义单回路控制系统是过程控制中结构最简单的一种形式,它只用一个调节器,调节器也只有一个输入信号,从系统方框图看,只有一个闭环。在大多数情况下,这种简单系统已经能够满足工艺生产的要求。但有些调节对象的动态特性虽然并不复杂,但控制的任务却比较特殊,则单回路控制系统就无能为力了。另外,随着生产过程向着大型、连续和强化方向发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,对能源消耗和环境污染也有明确的限制。为此,需要在单回路的基础上,采取其它措施,组成复杂控制系统,而串级控制系统就是其中一种改善和提高控制品质的极为有效的控制系统。液位和流量是工业生产过程中最常用的两个参数,对液位和流量进行控制的装置在工业生产中应用的十分普遍。液位的时间常数T一般很大,因此有很大的容积迟延,如果用单回路控制系统来控制,可能无法达到较好的控制质量。而串级控制系统可以用一般常规仪表来实现,成本增加也不大,却可以起到十分明显的提高控制质量的效果,因此往往采用串级控制系统对液位进行控制。一般情况下,流量是影响液位的主要因素,其时间常数较小,将它纳入副回路进行控制,不仅有效地克服了流量对液位造成的干扰,而且使系统工作频率提高,能够对液位实行较快的控制。2.2系统结构设计5整个过程控制系统由控制器、调节器、测量变送、被控对象组成。在本次控制系统中控制器为计算机,采用算法为PID控制规律,调节器为电磁阀,测量变送为HB、FT两个组成,被控对象为流量PV。结构组成如下图2.2所示。当系统启动后,水泵开始抽水,通过管道分别将水送到上水箱和下水箱,由HB返回信号,是否还需要放水到下水箱。若还需要(即水位过低),则通过电磁阀控制流量的大小,加大流量,从而使下水箱水位达到合适位置;若不需要(即水位过高或刚好合适),则通过电磁阀使流量保持或减小。其过程控制系统图如图2.1所示。图2.1控制系统框图过程控制系统由四大部分组成,分别为控制器、调节器、被控对象、测量变送。本次设计为流量回路控制,即为闭环控制系统,如下图2.2调节器电动调节阀中水箱液位变送器_(液位)定值图2.2液位单回路控制系统框图2.3控制系统的总体方框图及工作过程2.3.1被控对象的分析一、被控对象的构成图控制器控制阀被控对象测量元件变送器干扰作用f被控变量y控制作用偏差e给定值sz6被控对象为图2.3中所示液位对象。图2.3二、被控对象的工作原理、传递函数及理论推导如下:单容水箱如图2.1所示,Qi为入口流量,由调节阀开度μ加以控制,出口流量则由电磁阀控制产生干扰。被调量为水箱中的水位H,它反映水的流入与流出量之间的平衡关系。现在分析水位在电磁阀开度扰动下的动态特性。显然,在任何时刻水位的变化均满足下述物料平衡方程:1iodHQQdtF(2.1)其中iQk(2.2)oQkH(2.3)F为水箱的横截面积;k是决定于阀门特性的系数,可以假定它是常数;k是与电磁阀开度有关的系数,在固定不变的开度下,k可视为常数。液位对象的传递函数:00221iHHskQsHFsk第三章PID参数整定液位调节器1cGs流量调节器2cGs执行机构vGs流量对象2oGs液位对象1oGs流量变送器2mGs液位变送器1mGs73.1控制规律的比较与选择3.1.1常见控制规律的类型及优缺点比较PID控制的各种常见的控制规律如下:一、比例调节(P调节)在P调节中,调节器的输出信号ut与偏差信号et成比例,即CutKet(3.1)式中Kc称为比例增益(视情况可设置为正或负),ut为调节器的输出,是对调节器起始值0u的增量,0u的大小可以通过调整调节器的工作点加以改变。在过程控制中习惯用比例增益的倒数表示调节器输入与输出之间的比例关系:1utet(3.2)其中称为比例带。比例调节的显著特点就是有差调节。比例调节的余差随着比例带的加大而加大。从这一方面考虑,人们希望尽量减小比例带。然而,减小比例带就等于加大调节系统的开环增益,其后果是导致系统激烈振荡甚至不稳定。稳定性是任何闭环控制系统的首要要求,比例带的设置必须保证系统具有一定的稳定裕度。此时,如果余差过大,则需通过其它的途径解决。很大意味着调节阀的动作幅度很小,因此被调量的变化比较平稳,甚至可以没有超调,但余差很大,调节时间也很长。减小就加大了调节阀的动作幅度,引起被调量来回波动,但系统仍可能是稳定的,余差相应减小。具有一个临界值,此时系统处于稳定边界的情况,进一步减小系统就不稳定了。二、积分调节(I调节)的特点在I调节中,调