PCB中的传输线理论一博PCB板上的信号传输速率越来越高,PCB走线已经表现出传输线的性质.在集总电路中视为短路线的连线上,在同一时刻的不同位置的电流电压已经不同,所以集总参数在这时已经不起作用了,必须采用分布参数传输线理论来处理(注:如果线长度大于信号传输有效长度的1/6(1/4),那么我们就看做是一个分布式系统)。传输线的模型可以用图1表示:单根传输线模型如果是理想的无损传输线,这没有G和R。当然这也在现实中不存在的理想状况。所以,我们以下的考虑都是有损传输线。对于图传输线的性质可以用电报方程来表达,电报方程如下:dU/dz=(R+jwL)IdI/dz=(G+jwC)U电报方程的解为:通解中的由于R,G远小于jwL、jwC,所以通常所说的阻抗是指:从通解中可以看到传输线上的任意一点的电压和电流都是入射波和反射波的叠加,传输因此传输线上任意一点的输入阻抗值都是时间、位置、终端匹配的函数,再使用输入阻抗来研究传输线已经失去意义了,所以引入了特征阻抗、行波系数、反射系数的概念描述传输线。特征阻抗的物理意义就是:入射波的电压和入射波的电流的比值,或反射波的电压和反射波电流的比值。电磁波在介质的中的传输速度只与介质的介电常数或等效介电常数有关。根据经验:FR4内层带状线的传输速度为180ps/inch,表层微带线的传输速度为140~180ps/inch。PCB常见的传输线主要有以下几种:1.1.1微带线(Microstrip)式中:w--导线宽度t--导线厚度h--介质厚度适用范围:w/h的比值在0.1~1.0之间;相对介电常数在1~15之间;地线宽度大于信号线宽度7倍以上。1.1.2嵌入式微带线(EmbeddedMicrostrip)式中:w--导线宽度t--导线厚度h--介质厚度适用范围:w/h的比值在0.1~1.0之间;相对介电常数在1~15之间;地线宽度大于信号线宽度7倍以上。1.1.3差分线(DifferentialPair)式中:w--导线宽度t--导线厚度h--介质厚度s--导线边缘间距适用范围:w/h的比值在0.1~1.0之间;相对介电常数在1~15之间;地线宽度大于信号线宽度7倍以上;s小于100mil。1.1.4标准带状线(Stripline)式中:w--导线宽度t--导线厚度h--介质厚度适用范围:w/h0.35;相对介电常数在1~15之间;地线宽度大于信号线宽度倍以上。1.1.5带状差分线(Edeg-coupledSymmetricalStripline)式中:w--导线宽度t--导线厚度h--介质厚度s--导线边缘间距适用范围:w/h0.35;相对介电常数在1~15之间;地线宽度大于信号线宽度7倍以上;s小于100mil。1.1.6不对称差分线(AsymmetricStripline)式中:w--导线宽度t--导线厚度h、h1--导线两边到地平面的厚度适用范围:相对介电常数在1~15之间地线宽度大于信号线宽度7倍以上需要注意的是,以上这些公式只是可以用来近似估算传输线的阻抗,而且当特征阻抗在50欧姆左右时吻合较好(总误差小于5%),但当阻抗值偏离50欧姆较远时,误差就比较大,因此经验公式只能作为一种粗略的估算手段,如果需要精确计算阻抗,可以借助相关的EDA软件。现在的CITS27等阻抗计算工具可以方便的计算出你要求的阻抗。阻抗控制阻抗合理的控制是高速设计中的基本条件。阻抗匹配不但可以消除信号的反射,还可以降低串扰、EMI问题的发生。而阻抗匹配的前提是良好的阻抗控制。走线类型、介质厚度、线宽、线间距、介质材料等都对阻抗有贡献,需要综合考虑这些影响。要做好阻抗控制首先要了解PCB厂家的板材情况,然后根据PCB的层压结构确定线宽、介质厚度等。可以在设计之前和PCB加工厂家进行沟通。我们提出要求,让厂家根据他们的加工条件给出阻抗控制方案。PCB和电子产品设计一博在电子设计中,PCB是我们设计内容的物理载体,所有我们设计意图的最终实现就是通过PCB板来表现的。这样PCB设计在任何项目中是不可缺少的一个环节。但在以前的设计中,由于频率很低,密度很小,器件的管教间的间距很大,PCB设计的工作是以连通为目的的,没有任何其他功能和性能的挑战。所以在很长的一段时间里,PCB设计在整个项目中的地位是很低的。通常是由硬件逻辑连接设计人员来进行PCB的物理连接的。目前在有的一些小产品上还是这样的开发模式。随着电子、通信技术的飞速发展,今天的PCB设计面临的已经是与以往截然不同的、全新的挑战。主要表现在以下几个方面:1、信号边缘速率越来越快,片内和片外时钟速率越来越高,现在的时钟频率不再是过去的几兆了,上百兆上千兆的时钟在单板上越来越普遍。由于芯片工艺的飞速发展,信号的边沿速率也是越来越快,目前信号的上升沿都在1ns左右。这样就会导致系统和板级SI、EMC问题更加突出;2、电路的集成规模越来越大,I/O数越来越多,使得单板互连密度不断加大;由于功能的越来越强大,电路的集成度越来越高。芯片的加工工艺水平也越来越高。过去的DIP封装在现在的单板上几乎销声匿迹了,小间距的BGA、QFP成为芯片的主流封装。这样使得PCB设计的密度也就随之加大。3、产品研发以及推向市场的时间不断减少,使得我们必须面临一次性设计成功的严峻挑战;时间就是成本,时间就是金钱。在电子产品这样更新换代特别快的领域,产品面世早一天,他的利润机会窗就会大很多。4、由于PCB是产品实现的物理载体。在高速电路中,PCB质量的好坏之间关系到产品的功能和性能。同样的器件和连接,不同的PCB载体,他们的结果是不同的。所以,现在设计的流程已经在慢慢的转变了。以前设计中逻辑功能的设计往往占了硬件开发设计的80%以上,但现在这个比例一直在下降,在目前硬件设计中逻辑功能设计方面的只占到50%,有关PCB设计部分则也占据了50%的时间。专家预计在将来的设计中,硬件的逻辑功能开销要越来越小,而开发设计规则等高速PCB设计方面的开销将达到80%甚至更高。所有的这些只是说明,PCB设计将是现在和未来设计中的重点,也是难点。通常,我们的PCB设计中主要关注以下几点:1、功能的实现2、性能的稳定3、加工的简易4、单板的美观功能的实现是我们PCB的第一步。在过去的设计中由于信号边沿的速率和时钟频率比较低,只要逻辑的连接没有错误,物理连接的好坏不会影响到使用的性能。但这样的观点在现在的设计中是不使用的。有一个例子可以很好的表明这一点:美国一家著名的影象探测系统制造商的电路板设计师们最近碰到一件奇特的事:一个7年前就已经成功设计、制造并且上市的产品,一直以来都能够非常稳定可靠地工作,而最近从生产线上下线的产品却出现了问题,产品不能正常运行。所以,逻辑的真确连接也不能使功能真确实现。物理连接的好坏也是功能实现的主要条件。性能的保证就靠PCB的设计了,这个观点大家都有体会。同样的逻辑连接,同样的器件,不同的PCB他们的性能测试结果就不同。好的设计不光产品稳定性高,而且可以通过各种要求苛刻的测试。但不理想的设计就不可能达到这样的效果。在一些低端产品中,很多厂家使用的芯片组是相同的,逻辑连接也是相似的。唯一的不同就是各自的PCB设计水平的高低,产品的差异性主要就是体现在PCB的设计上了。加工的简易程度也是PCB设计好坏的一个重要指标。好的PCB设计是方便加工,维护,测试、制造的。PCB的好坏不仅和PCB加工厂家,SMT厂家的生产效率有关,还和我们测试、调试方便息息相关。美观大方也是PCB设计的一个要素。整体的美观和大气,使人看到就觉得舒服。PCB也是一件工艺品。好的PCB会让人驻足留恋的。PCB设计是一门综合性的学科,是质量、成本、时间等多方面相互协调的产物。在PCB设计中没有最好,只有更好。总之,高速PCB的设计是今天系统设计领域面临的严肃挑战,无论是设计方法、设计工具、还是设计队伍的构成以及工程师的设计思路,都需要积极认真地去应对。LVDS信号的PCB设计一博1、LVDS信号的工作原理和特点对于高速电路,尤其是高速数据总线,常用的器件一般有:ECL、BTL、GTL和GTL+等。这些器件的工艺成熟,应用也较为广泛,但都存在一个共同的弱点,即功耗大。新兴的CMOS工艺的低电压差分信号器件(即LowVoltageDifferencialSignal简称LVDS)给了我们另一种选择。可以说LVDS器件为高速低功耗电路设计提供了新的选择,得到广大硬件工程师的钟爱。LVDS器件的工作原理如下:其中发送端是一个为3.5mA的电流源,产生的3.5mA的电流通过差分线的其中一路到接收端。由于接收端对于直流表现为高阻,电流通过接收端的100欧姆的匹配电阻产生350mA的电压,同时电流经过差分线的另一条流回发送端。当发送端进行状态变化时它通过改变流经100欧姆电阻的电流的方向产生有效的'0'和'1'态。LVDS的特点是电流驱动模式,低电压摆幅350mV可以提供更高的信号传输率,使用差分传输的方式可以使信号的噪声和EMI都减少:LVDS有以下主要特点:A、低的输出电压摆幅(350mV)B、低的信号边缘变化率,dV/dt0.350V/0.5ns=0.7V/nsC、差分特征是磁干扰相互抵销,消除共模噪声,减少EMI。2、LVDS信号在PCB上的要求1)只要有LVDS信号的板最少都要有四层。LVDS信号布在与地平面相邻的布线层。例如,对于四层板而言,通常可以按以下进行层排布;LVDS信号层、地层、电源层、其他信号层。2)对于LVDS信号,必须进行阻抗控制(通常将差分阻抗控制在100欧姆)。对于不能控制阻抗的PCB布线必须小于500MIL。这样的情况主要表现在连接器上,所以在布局时要注意将LVDS器件放在靠近连接器处,让信号从器件出来后就经过连接器到达另一单板。同样,让接收端也靠近连接器,这样就可以保证板上的噪声不会或很少耦合到差分线上。3)对LVDS信号和其它信号比如TTL信号,最好使用不同的走线层,如果因为设计限制必须使用同一层走线,LVDS和TTL的距离应该足够远,至少应该大于3~5倍差分线间距。4)对收发器的电源和地进行滤波处理,滤波电容的位置应该尽量靠近电源和地管脚,滤波电容的值可以参照器件手册。5)对电源和地管脚与参考平面的连接应该使用短和粗的连线连接。同时使用多点连接。6)保证信号的回流路径最短,同时没有相互间的干扰。7)对走线方式的选择没有限制,微带线和带状线均可,但是必须注意有良好的参考平面。对不同差分线之间的间距要求间隔不能太小,至少应该大于3~5倍差分线间距。8)对于点到点的拓扑,走线的阻抗通常控制在100欧,但匹配电阻可以根据实际的情况进行调整。电阻的精度最好是1%-2%。因为根据经验,10%的阻抗不匹配就会产生5%的反射。9)对接收端的匹配电阻到接收管脚的距离要尽量的靠近,一般应小于7mm,最大不能超过12mm。由此可见:在PCB设计上,我们主要关心的是阻抗的控制和线长。阻抗的计算可以通过相关阻抗计算软件算出。在某些大型的PCB设计工具中也内嵌了阻抗计算模块(如CADENCE的ALLEGRO)。保持差分线的等长也是设计的重点,特别是经过连接器的LVDS信号,我们不仅要考虑互联单板的线长,更要关心连接器的信号排布对线长的影响。SKEW是和线长成比例的。LVDS器件由于它的低功耗,在现在注重环保的大环境下的使用是越来越广泛。对于它的设计经验还望大家去探索挖掘。