8.2018年普通高等学校招生全国统一考试

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2018年普通高等学校招生全国统一考试(八)理科数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分。考试用时120分钟。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2017广东湛江二模)己知x、y∈R,i是虚数单位,若x+yi与互为共轭复数,则x+y=(D)A.﹣2B.﹣1C.1D.2解析:==,x+yi与互为共轭复数,∴x=,y=.则x+y=2.故选D.2.(2017陕西咸阳三模)下列命题中真命题的个数是(D)①函数y=sinx,其导函数是偶函数;②“若x=y,则x2=y2”的逆否命题为真命题;③“x≥2”是“x2﹣x﹣2≥0”成立的充要条件;④命题p:“∃x0∈R,x02﹣x0+1<0”,则命题p的否定为:“∀x∈R,x2﹣x+1≥0”.A.0B.1C.2D.3解析:对于①,函数y=sinx,其导函数是y=cosx,为偶函数,①正确;对于②,“若x=y,则x2=y2”是真命题,则它的逆否命题也为真命题,②正确;对于③,“x≥2”时,不等式“x2﹣x﹣2≥0”成立,即充分性成立;“x2﹣x﹣2≥0”时,x≤﹣1或x≥2,必要性不成立;∴是充分不必要条件,③错误;对于④,命题p:“∃x0∈R,x02﹣x0+1<0”,命题p的否定为:“∀x∈R,x2﹣x+1≥0”,④正确.综上,正确命题的序号是①②④,共3个.故选D.3.(2017湖南衡阳县高考模拟)某市国庆节7天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这7天的认购量与成交量作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.上述判断中错误的个数为(C)A.1B.2C.3D.4解析:7天假期的楼房认购量为:91、100、105、107、112、223、276;成交量为:8、13、16、26、32、38、166.对于①,日成交量的中位数是26,故错;对于②,日平均成交量为:,有1天日成交量超过日平均成交量,故错;对于③,根据图形可得认购量与日期不是正相关,故错;对于④,10月7日认购量的增幅大于10月7日成交量的增幅,正确.故选C.4.(2017云南省高考二模)《九章算术》是我国古代数学成就的杰出代表,是“算经十书”中最重要的一种,是当时世界上最简练有效的应用数字,它的出现标志中国古代数学形成了完整的体系.其中《方田》章有弧田面积计算问题,计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积=(弦×矢+矢×矢),弧田是由圆弧(简称为弧田弧)和以圆弧的端点为端点的线段(简称为弧田弧)围成的平面图形,公式中“弦”指的是弧田弦的长,“矢”等于弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弦长AB等于6米,其弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为平方米,则cos∠AOB=(D)A.B.C.D.解析:如图,由题意可得:AB=6,弧田面积S=(弦×矢+矢2)=(6×矢+矢2)=平方米.解得矢=1,或矢=﹣7(舍),设半径为r,圆心到弧田弦的距离为d,则,解得d=4,r=5,∴cos∠AOD==,∴cos∠AOB=2cos2∠AOD﹣1=﹣1=.故选D.5.(2017北京市丰台区一模)一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是(A)A.aB.bC.cD.d解析:根据题意:若甲同学猜对了1﹣b,则乙同学猜对了,3﹣d,丙同学猜对了,2﹣c,丁同学猜对了,4﹣a,根据题意:若甲同学猜对了3﹣c,则丁同学猜对了,4﹣a,丙同学猜对了,2﹣c,这与3﹣c相矛盾,综上所述号门里是a,故选A.6.(2017安徽安庆二模)定义在R上的奇函数f(x)满足:f(x+1)=f(x﹣1),且当﹣1<x<0时,f(x)=2x﹣1,则f(log220)等于()A.B.﹣C.﹣D.解析:∵f(x+1)=f(x﹣1),∴函数f(x)为周期为2的周期函数又∵log232>log220>log216,∴4<log220<5。∴f(log220)=f(log220﹣4)=f(log2)=﹣f(﹣log2)又∵x∈(﹣1,0)时,f(x)=2x﹣1。∴f(﹣log2)=﹣,故f(log220)=.故选D.7.(2017湖南省郴州市四次质量检测)已知向量,且,则等于(B)A.B.C.D.B【解析】因为,所以2m-2=0,解得m=1。.5)(,52),5,0(2baaabaababa所以,选B.8.(2017内蒙古百校联盟联合模拟)函数f(x)=(﹣1)•sinx的图象大致形状为(A)A.B.C.D.解析:∵f(x)=(﹣1)•sinx,∴f(﹣x)=(﹣1)•sin(﹣x)=﹣(﹣1)sinx=(﹣1)•sinx=f(x),∴函数f(x)为偶函数,故排除C,D,当x=2时,f(2)=(﹣1)•sin2<0,故排除B,故选A。9.(2017福建泉州模拟)图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,且该几何体的顶点都在同一球面上,则该几何体的外接球的表面积为(C)A.32πB.48πC.50πD.64π解析:由三视图可知该几何体是一个底面是矩形的四棱锥,记该几何体的外接球球心为O,半径R=OA,则PA=×=,OP=R﹣,所以OA2=OP2+AP2,又因为OP2==,所以R2=+,解得R=,所以球的面积为S=4π×R2=4π×=50π,故选C.10.(2017湖南邵阳二模)已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)(x0>)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=截得的弦长为|MA|,若=2,则|AF|等于(B)A.B.1C.2D.3解析:由抛物线的定义可知|MF|=x0+.∵圆M与线段MF相交于点A,且被直线x=截得的弦长为|MA|,∴|MA|=2(x0﹣),∵=2,∴|MF|=|MA|,∴x0=p,∴2p2=8,∴p=2,∴|AF|=1.故选B.混合肥料,11.(2017广东省清远市清新一中一模)一个化肥厂生产甲、乙两种生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为12000元,生产1车皮乙种肥料产生的利润为7000元,那么可产生的最大利润是(C)A.29000元B.31000元C.38000元D.45000元解析:设x、y分别表示计划生产甲、乙两种肥料的车皮数.由题意,得.工厂的总利润z=12000x+7000y。由约束条件得可行域如图,由,解得:,所以最优解为A(2,2)。则当直线12000x+7000y﹣z=0过点A(2,2)时,z取得最大值为:38000元,即生产甲、乙两种肥料各2车皮时可获得最大利润.故选C.12.(2017安徽省黄山市二模)已知圆C:x2+y2=1,点P为直线+=1上一动点,过点P向圆C引两条切线PA,PB,A,B为切点,则直线AB经过定点(B)A.B.C.D.解析:因为P是直线+=1的任一点,所以设P(4﹣2m,m),因为圆x2+y2=1的两条切线PA、PB,切点分别为A、B,所以OA⊥PA,OB⊥PB,则点A、B在以OP为直径的圆上,即AB是圆O和圆C的公共弦,则圆心C的坐标是(2﹣m,),且半径的平方是r2=,所以圆C的方程是(x﹣2+m)2+(y﹣)2=,①又x2+y2=1,②,②﹣①得,(2m﹣4)x﹣my+1=0,即公共弦AB所在的直线方程是:(2m﹣4)x﹣my+1=0,即m(2x﹣y)+(﹣4x+1)=0,由得x=,y=。所以直线AB恒过定点(,),故选B.二、填空题:本题共4小题,每小题5分,共20分。13.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等。如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()解析:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=3时,a=,b=16满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故输出的n值为4。答案:4.14.(2017广西柳州一模)已知tanα=2,则=.解析:由==,∵tanα=2,∴=.答案:﹣1.15.(2017河南洛阳二模)如图,扇形AOB的弧的中点为M,动点C,D分别在线段OA,OB上,且OC=BD.若OA=1,∠AOB=120°,则的取值范围是.解析:以OA为x轴,O为原点建立如图坐标系,则∵半径OA=1,且∠AOB=120°,∴弧AMB的中点M坐标为(,)求得BO方程为:y=﹣x,设C(1﹣m,0),则D(﹣m,m),(0≤m≤1)∴=(﹣m,﹣),=(﹣m﹣,m﹣)因此,•=(﹣m)(﹣m﹣)﹣(m﹣)=m2﹣m+=(m﹣)2+∴当m=时,•有最小值为;当m=0或1时,•有最大值为答案:16..(2017江苏盐城一模)将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O﹣EFG体积的最大值是.解析:∵将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,∴三棱锥O﹣EFG的高为圆柱的高,即高为ABC,∴当三棱锥O﹣EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,(S△EFG)max=,∴三棱锥O﹣EFG体积的最大值Vmax==.答案:4.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(本小题满分12分)(2017湖南长沙一模)已知数列{an}为等差数列,其中a2+a3=8,a5=3a2.(1)求数列{an}的通项公式;(2)记,设{bn}的前n项和为Sn.求最小的正整数n,使得.解:(1)设等差数列{an}的公差为d,依a2+a3=8,a5=3a2,有,解得a1=1,d=2,从而{an}的通项公式为。(2)因为==﹣,所以=.令,解得n>1008,故n的最小值为1009.18.(本小题满分12分)(2017福建龙岩二模)已知边长为2的菱形ABCD中,∠BCD=60°,E为DC的中点,如图1所示,将△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如图2所示.(1)求证:△PAB为直角三角形;(2)求二面角A﹣PD﹣E的余弦值.【解答】证明:(Ⅰ)∵边长为2的菱形ABCD中,∠BCD=60°,E为DC的中点,如图1所示,∴BE⊥DC,AB∥CD,∴AB⊥BE,∴∠ABE=90°,∵将△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如图2所示.在翻折过程中,∠ABE=90°不变,∴在△ABP中,∠ABP=90°,∴△PAB为直角三角形.解:(2)由(1)得∠BED=∠ABE=90°,∴DE⊥BE,以E为原点,ED为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,A(2,,0),P(0,0,1),D(1,0,0),E(0,0,0),=(﹣1,0,1),=(1,,0),=(0,0,1),=(1,0,0),设平面ADP的法向量=(x,y,z),则,取x=,得=(),平面PDE的法向量=(1,0,0),设二面角A﹣PD﹣E的平面角为θ,则cosθ=

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功