线性代数同济六版一元一次方程ax=b一元二次方程二元、三元线性方程组行列式矩阵及其运算矩阵的初等变换与线性方程组向量组的线性相关性矩阵的特征值和特征向量一元一次方程ax=b当a≠0时,bax110x2x22x3x221212312二元(三元)线性方程组例解二元线性方程组14x71得于是2x16x242x72类似地,可得于是第一章行列式§1二阶与三阶行列式,21122211212221aaaabaabx1)(1bxaxabxaxa22221211212111线性方程组时,得当0aaaa1221211乘第二个方程乘第一个方程的两边,即用1222aa212221112212211baabxaaaa)(消去x2,的两边后,两式相加得消元法记22211211aaaa22211211aaaa称它为二阶行列式,于是,线性方组(1)的解可以写为21122211aaaa定义为类似地,可得.aaaaabbax211222112112112,21122211212221aaaabaabx1333231232221131211aaaaaaaaa312213332112322311aaaaaaaaa类似的,我们还可以定义三阶行列式为3221312312332211aaaaaaaaa13222112112211112222112112221211aaaababaxaaaaababx,n阶排列共有n!个.排列的逆序数§2全排列及其逆序数把1,2,……,n排成一列,称为一个n阶全排列.奇排列逆序数为奇数的排列.在一个排列中如果一对数的前后位置与大小次序相反就说有例1排列12……n称为自然排列,所以是偶排列.一个逆序.偶排列一个排列中所有逆序的总数.逆序数为偶数的排列.它的逆序数为0,三阶排列共有3×2×1=3!个.321jjj例2排列32514的逆序数为t(32514)例3排列n(n−1)…321的逆序数为t(n(n−1)…321)=0+1+2+…+(n−1)=21nn排列32514为奇排列.=0+1+0+3+1=5333231232221131211aaaaaaaaa312213332112322311aaaaaaaaa三阶行列式定义为3221312312332211aaaaaaaaa13§3n阶行列式的定义三阶行列式是3!=6项的代数和.321321j3j2j1jjjtaaa1)()(321j3j2j1aaa123231312132213321t(123)=0t(231)=2t(312)=2t(132)=1t(213)=1t(321)=3三阶行列式可以写成3213212331232221131211j3j2j1jjjt33aaaaaaaaaaaa1)()(,的一个排列,,是其中321jjj321.jjjjjjt321321的逆序数是排列)(定义由n2个数组成的数表,的一个排列,,,,是其中n21jjjn21.jjjjjjtn21n21的逆序数是排列)(n21n21njj2j1jjjtaaa1......)()(nn2n1nn22221n11211a...aaa...aaa...aa称为n阶行列式,项的代数和,即规定为所有形如记成nn2n1nn22221n11211a...aaa...aaa...aa例1下三角行列式333231222111aaa0aa00a332211aaan21n21njj2j1jjjtaaa1......)()......(例2下三角行列式nn2211aaann2n1n222111a...aa0...aa0...0a例3三阶行列式321321例5n阶行列式n21n2121nn1)()(4321例4四阶行列式4321经对换a与b,得排列,m1k1babbaa1babbaatbbabaatm1k1m1k1)()(所以,经一次相邻对换,排列改变奇偶性.,11mkbbabaa§4对换对换定理1一个排列中的任意两个元素对换,排列改变奇偶性.证先证相邻对换的情形.那么设排列1cbcbabaan1m1k1经对换a与b排列,得排列2cacbbbaan1m1k1相邻对换再证一般对换的情形.设排列事实上,排列(1)经过2m+1次相邻对换变为排列(2).np2p1pppptn21n21aaaD1)()(定理2n阶行列式也可以定义为根据相邻对换的情形及2m+1是奇数,性相反.所以这两个排列的奇偶53142解t(53142)=0+1+2+1+3=7t(53412)=0+1+1+3+3=853412求这两个排列的逆序数.经对换1与4得排列例1排列1.选择i与k使(1)25i1k成偶排列;(2)25i1k成奇排列.项,是否为四阶行列式中的和2431431244332114aaaaaaaa2.若是,指出应冠以的符号3.计算n阶行列式练习111是四阶,不是四阶行列式中的项2431431244332114aaaaaaaa2.4331241224314312aaaaaaaa21nn11113)()(.43312412433124123433124122413taaaaaaaa1aaaaa1行列式中的项.1.(1)i=4,k=3时,即排列25413为偶排列;(2)i=3,k=4时,即排列25314为奇排列.性质1性质2§5行列式的性质推论两行(列)相同的行列式值为零.数k,推论行列式中某一行(列)的公因子可以提到行列式符号性质4性质3式等于零.等于用数k乘此行列式.行列式与它的转置行列式相等.互换行列式的两行(列),行列式变号.行列式的某一行(列)中的所有元素都乘以同一个行列式中如果有两行(列)元素成比例,则此行列外面.nnnj2n1nn2j22221n1j11211nnnj2n1nn2j22221n1j11211acaaacaaacaaabaaabaaabaa若行列式的某一列(行)的元素都是两个元素和,nnnjnj2n1nn2j2j22221n1j1j11211acbaaacbaaacbaa)()()(例如则此行列式等于两个行列式之和.性质5把行列式的某行(列)的各元素同一倍数后加到另nnnjnjni1nn2j2j2i221n1j1j1i111aakaaaaakaaaaakaaannnjni1nn2j2i221n1j1i111aaaaaaaaaaaa一行(列)的对应元素上去,行列式的值不变.性质6,nnn2n12n22121n2111aaaaaaaaa,aaaaaaaaaDnn2n1nn22221n11211设行列式DT称为行列式D的转置行列式.记那么DDT222cbacba1111例222cc1bb1aa1=TD,bbbbbbbbbDnn2n1nn22221n112111设行列式D=det(aij)互换第i,j(i<j)两行,得行列式性质2的证明33332222dcbadcbadcba11112例33332222dcba1111dcbadcba其中,当k≠i,j时,bkp=akp;当k=i,j时,bip=ajp,,bjp=aip,nji1nji1npjpipp1t1bbbbpppp1D)()(其中,1…i…j…n是自然排列,)()()()(11ppppppppnji1nij1tt所以nij1nij1npjpipp1t1aaaappppD1)()(nji1nji1npipjpp1taaaapppp1)()(nij1nji1npjpipp1taaaapppp1)()(于是=−D333231232221131211aaakakakaaaa333231232221131211aaaaaaaaak,若例121013201D4121013402则D21210132012)()(例3333231232221131211aaaaaakakaka333231232221131211kakakaaaaaaa333231232221131211aaaaaaaaak132141131132010131r2-r1例5=422510211=0例6例725422251021142251021125205102115021011343212101D解r2-r1,r3-3r1,r4-r1例8计算行列式7120641022202101Dr2÷2r3+r2,r4-2r29300530011102101271206410111021012r4÷(-3),r3←→r4r4+3r3530031001110210164000310011102101624dc3b6a10cb3a6ba3adc2b3a4cb2a3ba2adcbacbabaadcbaDcb3a6ba3a0cb2a3ba2a0cbabaa0dcbaDba3a00ba2a00cbabaa0dcba例9计算行列式解从第4行开始,后行减前行得,2334rrrra000ba2a00cbabaa0dcba34rr4a例10计算行列式axxxxaxxxxaxx3ax3ax3ax3aDaxxxxaxxxxaxxxxaD解各行都加到第一行,axxxxaxxxxax1111x3a)(xa0000xa0000xa01111x3a)(3xax3a各行都减第一行的x倍第一行提取公因子(a+3x)§6行列式按行(列)展开在n阶行列式det(aij)中,把元素aij所在的第i行和第j列Aij=(−1)i+jMij记成Mij,称为元素aij的余子式.称它为元素aij的代数余子式.划去,剩下的(n−1)2个元素按原来的排法构成的n−1阶行列式,记例1三阶行列式323231232221131211aaaaaaaaa中元素a23的余子式为3231121123aaaaM元素a23的代数余子式为23233223MM1A)(例2四阶行列式103032x115201101中元素x的代数余子式为1001501111A2332)(=5ji0AaAaAanjnij2i2j1i1行列式某一行(列)的元素与另一行(列)的对应元或ji0AaAaAajnin2j2i1j1i行列式等于它的任意一行(列)的各元素与其对应.n,,2,1iAaAaAaDinin2i2i1i1i或.n,,2,1jAaAaAaDnjnjj2j2j1j1的代数余子式乘积之和,即素的代数余子式乘积之和等于零.即定理3推论引理在行列式D中,如果它的第i行中除aij外其余元素都为0,即D=aijAijnnnj1nijn1j111aaa0a0aaaD那么nn2n1nn2222111aaaaaa00aD证明先证aij位于第1行,第1列的情形,即由行列式的定义,得n21n21npp2p1ppptaaaD1)(n2n2npp2ppt11aaa1)(n211n21n2n2npp2p11pppptnpp211pp1taaaaaa11)()(1111Ma111