中考数学压轴题详解—圆[1]

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

(第4题图)HEDBOAC圆作为初中数学中重要的知识点,在历年高考题中都出现在重要的得分点高的部分,尤其是压轴题中,有些同学往往认为压轴题一定是很难很难得到分数的部分,其实在题目中往往前一到两个小题都是考察大家的基础知识,只要正确列出公式就能得到相应的分数。要学好圆的部分,不仅要靠平时的练习,最重要的还是回归课本,把基础知识参透,只有基础牢固了,才能进一步对圆的认识进行延伸和扩展。1如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60°.(1)若△AOB的外接圆与y轴交于点D,求D点坐标.(2)若点C的坐标为(-1,0),试猜想过D、C的直线与△AOB的外接圆的位置关系,并加以说明.(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式.2如图(4),正方形111OABC的边长为1,以O为圆心、1OA为半径作扇形1111OACAC,与1OB相交于点2B,设正方形111OABC与扇形11OAC之间的阴影部分的面积为1S;然后以2OB为对角线作正方形222OABC,又以O为圆心,、2OA为半径作扇形22OAC,22AC与1OB相交于点3B,设正方形222OABC与扇形22OAC之间的阴影部分面积为2S;按此规律继续作下去,设正方形nnnOABC与扇形nnOAC之间的阴影部分面积为nS.(1)求123SSS,,;(2)写出2008S;(3)试猜想nS(用含n的代数式表示,n为正整数).3(10分)如图,点I是△ABC的内心,线段AI的延长线交△ABC的外接圆于点D,交BC边于点E.(1)求证:ID=BD;(2)设△ABC的外接圆的半径为5,ID=6,ADx,DEy,当点A在优弧上运动时,求y与x的函数关系式,并指出自变量x的取值范围.4如图,点A,B,C,D是直径为AB的⊙O上四个点,C是劣弧BD的中点,AC交BD于点E,AE=2,EC=1.(1)求证:DEC△∽ADC△;(3分)(2)试探究四边形ABCD是否是梯形?若是,请你给予B1B2B3A1A2A3OC3C2C1图4S2S1S3DBAOCE·图10DBAOCE图11证明并求出它的面积;若不是,请说明理由.(4分)(3)延长AB到H,使BH=OB.求证:CH是⊙O的切线.(3分)5如图10,半圆O为△ABC的外接半圆,AC为直径,D为BC上的一动点.(1)问添加一个什么条件后,能使得BDBEBCBD?请说明理由;(2)若AB∥OD,点D所在的位置应满足什么条件?请说明理由;(3)如图11,在(1)和(2)的条件下,四边形AODB是什么特殊的四边形?证明你的结论.66如图1,已知正方形ABCD的边长为23,点M是AD的中点,P是线段MD上的一动点(P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E.(1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线)?(2)求四边形CDPF的周长;(3)延长CD,FP相交于点G,如图2所示.是否存在点P,使BF*FG=CF*OF?如果存在,试求此时AP的长;如果不存在,请说明理由.7如图,在平面直角坐标系xoy中,M是x轴正半轴上一点,M与x轴的正半轴交于AB,两点,A在B的左侧,且OAOB,的长是方程212270xx的两根,ON是M的切线,N为切点,N在第四象限.(1)求M的直径.(2)求直线ON的解析式.(3)在x轴上是否存在一点T,使OTN△是等腰三角形,若存在请在图2中标出T点所在位置,并画出OTN△(要求尺规作图,保留作图痕迹,不写作法,不证明,不求T的坐标)若不存在,请说明理由.1解:(1)连结AD.·M·AFCOPEDOB图1·PDOGEMFBAC图2yxBMAON图1yxBMAON图2∵∠ABO=60°,∴∠ADO=60°…..1分由点A的坐标为(3,0)得OA=3.∵在Rt△ADO中有cot∠ADO=ODOA,…………….2分∴OD=OA·cot∠ADO=3·cot60°=3×33=3.∴点D的坐标为(0,3)……………3分(2)DC与△AOB的外接圆相切于点D,理由如下:由(1)得OD=3,OA=3.∴2222(3)323ADODOA.又∵C点坐标是(-1,0),∴OC=1.∴22221(3)2CDOCOD………………4分∵AC=OA+OC=3+1=4,∴CD2+AD2=22+(23)2=42=AC2…………………5分∴∠ADC=90°,即AD⊥DC.由∠AOD=90°得AD为圆的直径.∴DC与△AOB的外接圆相切于点D……………6分(说明:也可用解直角三角形或相似三角形等知识求解.)(3)由二次函数图象过点O(0,0)和A(3,0),可设它的解析式为y=ax(x-3)(a≠0).如图,作线段OA的中垂线交△AOB的外接圆于E、F两点,交AD于M点,交OA于N点.由抛物线的对称性及它的顶点在圆上可知,抛物线的顶点就是点E或F.∵EF垂直平分OA,∴EF是圆的直径.又∵AD是圆的直径,∴EF与AD的交点M是圆的圆心………….7分由(1)、(2)得OA=3,AD=23.∴AN=12OA=32,AM=FM=EM=12AD=3.∴222233(3)()22MNAMAN.∴FN=FM-MN=3-32=32,EN=EM+MN=3+32=332.∴点E的坐标是(32,332),点F的坐标是(32,-32)……..8分当点E为抛物线顶点时,有32(32-3)a=332,a=233.∴y=233x(x-3).即y=233x2+23x…………………………9分MEFN当点F为抛物线顶点时,有32(32-3)a=-32,a=239.∴y=239x(x-3).即y=239x2233x.故二次函数的解析式为y=233x2+23x或y=239x2233x….10分2(1)2211π1π1144S;·····················2分2222121ππ24228S;····················4分223221221ππ22422416S;················6分(2)2008200720091π22S;························8分(3)111π22nnnS(n为正整数).···················10分3(1)证明:如图,∵点I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠CBI.………………2分∵∠CBD=∠CAD,∴∠BAD=∠CBD.……………………………3分∴∠BID=∠ABI+∠BAD=∠CBI+∠CBD=∠IBD.∴ID=BD.………………………5分(2)解:如图,∵∠BAD=∠CBD=∠EBD,∠D=∠D,∴△ABD∽△BED.…………………………7分∴BDADDEBD.∴22ADDEBDID.…………………8分∵ID=6,AD=x,DE=y,∴xy=36.………………9分又∵x=ADID=6,AD不大于圆的直径10,∴6x≤10.∴y与x的函数关系式是36yx.(610x≤)…………………………10分说明:只要求对xy=36与6x≤10,不写最后一步,不扣分.4(1)证明:∵C是劣弧BD的中点,∴DACCDB.····································1分而ACD公共,∴DEC△∽ADC△.··································3分(2)证明:连结OD,由⑴得DCECACDC,∵1.213CEACAEEC,∴2313DCACEC.∴3DC.····························································································4分由已知3BCDC,∵AB是⊙O的直径,∴90ACB,∴222223312ABACCB.∴23AB,∴3ODOBBCDC,∴四边形OBCD是菱形.∴DCABDCAB∥,,∴四边形ABCD是梯形.·········································5分法一:过C作CF垂直AB于F,连结OC,则3OBBCOC∴60OBC.························································································6分∴sin60CFBC,33sin60322CFBC,∴113932332224ABCDSCFABDC梯形=+=+=.··································7分法二:(接上证得四边形ABCD是梯形)又DCAB∥∴ADBC,连结OC,则AOD△,DOC△和OBC△的边长均为3的等边三角形6分∴AOD△≌DOC△≌OBC△,∴239333344AODABCDSS△梯形===·····················································7分(3)证明:连结OC交BD于G由(2)得四边形OBCD是菱形,∴OCBD且OGGC.·········································································8分又已知OB=BH,∴BGCH∥.·························································9分∴90OCHOGB,∴CH是⊙O的切线.········································10分5解:(1)添加AB=BD·····································································································2分∵AB=BD∴AB=BD∴∠BDE=∠BCD········································································3分又∵∠DBE=∠DBC∴△BDE∽△BCD∴BDBEBCBD·······························································································································4分(2)若AB∥DO,点D所在的位置是BC的中点················································5分∵AB∥DO∴∠ADO=∠BAD······························································6分∵∠ADO=∠OAD∴∠OAD=∠BAD∴DB=DC········································7分(3)在(1)和(2)的条件下,.∵AB=BD=DC∴∠BDA=∠DAC∴BD∥OA又∵AB∥DO∴四边形AODB是平行四边形····································9分∵OA=OD∴平行四边形AODB是菱形··········································10分6解:(1)FB=FE,PE=PA···························································

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功