第24卷 第6期重 庆 交 通 学 院 学 报2005年12月Vo1.24No.6JOURNALOFCHONGQINGJIAOTONGUNIVERSITYDec.,2005王肇慧, 肖盛燮, 刘文方,400074:.、,3,:,,. :;;;:TU441 :A :1001-716X(2005)06-0099-05 .,.,、、.,,.、.、(Bishop)、[1],(Janbu)、.,、,.1 1.1(1)1 ,.:K=/=(Wcosαtanφ+cL)/Wsinα(1):W———ABC,(kN);α———(°);c、φ———(kPa)(°);L———AC(m).,,.Kmin≥1.25,.,.1.21.2.1瑞典条分法(图2)2 :K==(tanφ∑i=ni=1Wicosαi+cl⌒)/∑i=ni=1Wisinαi(2),Wi———i,(kN);αi———i()(°);l⌒———AD(m).:2004-10-22;:2004-12-02:(1977-),,,,..,,Kmin.1.2.2简化的毕肖普(Bishop)法(图3)3 Bishop:K=i=ni=11/mai·[Witanφi+cilicosαi]/i=ni=1Wisinαi(3):mai=cosαi+1/K·tanφisinαi()(4)K(4)、(3)K,K,KmaiK,KK.1.2.3公式计算法(图4、5)4 5 abcd:N=∫dN=∫x2x1γhcosα·dx=∫α2α1γRcosαcos2α(Rcosα-t+θRsinα)dα(5)T=∫dT=∫x2x1γhsinα·dx=∫α2α1γRsinαcos(Rcosα-t+θRsinα)dα(6):α1、α2———y;t———y(m).,N=γR2/6·{[(5+cos2α2)sinα2-(5+cos2α1)sinα1]-3t/2R·[(sin2α2-sin2α1)+2(α2-α1)]+θ[cosα1(1+cos2α1)-cosα2(1+cos2α2)]}(7)T=γR2/6·[(1-cos2α1)(3t/2R-cosα1-θsinα1)+2cosα1-(1-cos2α2)(3t/2R-cosα2-θsinα2)-2cosα2](8)K=(Ntanφ+cl)/T(9)1.31.3.1简布(Janbu)普遍条分法(图6)6 ,,Janbu..Xi=ΔEi·ti/bi-Eitanαi(10):αi———EiEi+ΔEi().ΔXi=Xi+1-Xi(11)Ai=[(Wi+ΔXi)tanφi+cibi]/maicosαi(12)Bi=(Wi+ΔXi)tanαi(13)k=Ai/Bi(14)1.3.2不平衡推力法(亦称传递系数法或剩余推力法)(图7),、,.[2]:Ei=[(W1i+W′2i)sinαi+Dicos(αi-βi)]-{cili+[(W1i+W′2i)cosαi-Disin(αi-βi)]tanφ1}/K+Ei-1Χi-1(15)Χi-1=cos(αi-1-αi)-sin(αi-1-αi)tanφi/K100 重庆交通学院学报 第24卷(16):W1i———;W′2i———;Ei、Ei-1———;αi、αi-1———;Χi-1———i-1i;Di———,Di=γwAisinβi.(15),,.,0,,0,K.2 2.1(1).1 BishopJanbu.①;②.①,;②.①;②.①;②1/3.[3].、、、,β,γ,φ,c,αβγφc(),αi,R,θαβηγc(),αi,R,θαβγφcR(),α1α2y,θ(=1/m),tyβγφc(),αi,Ei,xiβγφcα1(),Ei,Χi-1..θ.,10%~15%;θ,20%.,,.,,.,,100,,.,[4].2.21 H=8m,β=50°,γ=19.2kN/m3,φ=10°,c=16.4kPa..2 αi(°)sinαicosαitanφW(kN)Wsinαi(kN)Wcosαi(kN)K200.340.940.181333.39453.351253.390.939250.420.910.18963.41404.63876.700.884300.500.870.18710.00355.00617.700.877350.570.820.18523.28298.27429.090.93400.640.770.18378.03241.94291.081.043500.770.640.18161.36124.25103.271.763 bi(m)hi(m)Wi(kN)αi(°)Wisinαi(kN)Wicosαi(kN)L⌒(m)110.7814.9810.592.7514.72212.2843.7815.8511.9642.12313.6870.6621.2525.6165.86414.9695.2326.8643.0384.96516.12117.5032.7663.5898.81615.60107.5239.0967.8083.45714.6990.0546.0464.8262.51813.4967.0154.0154.2239.3891.21.8342.1663.9637.8818.51 371.65510.3212.90101第6期 王肇慧,等:边坡稳定性计算方法的对比分析 ,Kα,.K=0.87..φ=10°,β=60°,,α=41°,θ=33°,O.K=(tanφi=ni=1Wicosαi+cl⌒)/i=ni=1Wisinαi=(0.18×510.32+16.4×12.90)/371.65=0.82,0.82.4 αi(°)li(m)Wi(kN)Wisinαi(kN)Witanφ(kN)cilicosαi(kN)mαi(Witanφi+cilicosαi)/mαiK=0.90K=0.83K=0.90K=0.83110.591.0214.982.752.6416.441.021.0218.7118.71215.851.0443.7811.967.7216.411.021.0223.6623.66321.251.0770.6625.6112.4616.351.001.0128.8128.52426.861.1295.2343.0316.7916.390.980.9933.8633.52532.761.19117.5063.5820.7216.410.950.9639.0838.68639.091.29107.5267.8018.9616.420.900.9139.3138.88746.041.4490.0564.8215.8816.390.840.8538.4237.96854.011.7167.0154.2211.8216.480.750.7637.7337.24963.963.0042.1637.887.4321.60.620.6346.8246.08 371.65306.40303.25 K=0.90,K=306.4/371.65=0.82,K=0.83,K=303.25/371.65=0.82,,K=0.82.5 α(°)cosαcos2αSinαsin2αt(m)1/m3t/2RγR2/6NT18.000.990.960.140.281~213.781.731.85401.02237.28121.48233.490.830.390.550.922~33.0900.41401.02225.26241.94374.000.28-0.850.960.53 462.54363.42 K=N·tanφ+c·lT=462.54×0.18+16.4×12.9363.42=0.81,0.81.16:6 Bishop1 H=8m,β=60°,γ=19.2kN/m3,φ=10°,c=16.4kPa0.870.820.820.812 H=15m,β=40°,γ=18kN/m3,φ=15°,c=30kPa2.11.391.421.373 H=20m,β=30°,γ=20kN/m3,φ=20°,c=15kPa1.621.091.131.083 3,:1),;2),.,1,2、32%~4%.,,;3),,,.,.:[1] .()[M].:,1996:48-50.[2] ,,.[J].,2003,24(4):545-548.102 重庆交通学院学报 第24卷[3] .[M].:,1980:30-33.[4] .———[M].:,2003:80-81.ComparisonofanalyticalmethodsforslopestabilityWANGZhao-hui, XIAOSheng-xie, LIUWen-fangSchoolofCivilEngineering&Architecture,ChongqingjiaotongUniversity,Chongqing400074,ChinaAbstract:Severalwidelyusedanalyticalmethodsforslopestabilitythatwerederivedfromtheultimateequilibriumtheoryarecomparedinthispaper.Theirapplicablerangeandaccuracyhavebeendiscussedrespectivelyandverifiedwiththreepracticalexamples.Itisconcludedfromtheresultsofanalysesthat:theresultfromlinearslipsurfacemethodisabithigh;onthecontrarySwedencircularslicemethodisabitcon-servative;thesimplifiedBishopmethodcanbeusedeffectivelyinevaluatingslopestability.Keywords:slopestability;analyticalmethod;ultimateequilibriumtheory;comparison(98)R,R=D/2+H/tanβ.8 2)8,,,,47mm.5 ,,.,,.,,.:[1] .[D].,2004.[2] ,.[M].:,2002.[3] ,,,.MATLAB[M].:,2002.Analysesongroundsurfacesettlementduetoextra-shallow-underground-pipejackingwithcurvebystochasticmediumtheoryGONGShang-long, YANGZhuan-yun, CHENSi-tianSchoolofCivilEngineering&Architecture,ChongqingJiaotongUniversity,Chongqing400074,ChinaAbstract:Byusingstochastictheory,settlementsofgroundsurfaceoveraextra-shallow-underground-pipejackingwithcurveinDrainageEn-gineeringinthedowntownareaofChongqingCityareanalyzed,andthesimplifiedcalculateformulasarededuced.Comparisonbetweencalcu-latedandmeasuredsettlementsshowsthattheyarerelativelyapproximate.Soitisdemonstratedthatstochastic