Macroeconomic Sol_midterm-2014

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

MacroeconomicAnalysisECON6022Fall2014Oct25,2014INSTRUCTIONS:Timingandpoints:Theexamlastsfor150minutes.Themaximalnumberofpointstobeattainedforthisexamis100points.Language:PleaseformulateyouranswersinEnglish.Identi cation:PleasewriteyourNAMEandUniversityNUMBERonthecoveroftheanswerbookthatyouuse.Pleasewriteinanintelligibleway,andwriteallyouranswersintheanswerbook.1CapitalShare[20Points]Ingrowthaccounting,basedontheproductionfunctionY=AK L1 ,theparameter isdeterminedbysettingitequaltotheaveragecapitalshareofacountry.a.Explainthejusti cationforthisprocedure.[Hint:Youmaywanttousesomesimpleequationstoexplainit.]Solution:SinceMPK=@Y@K= AK 1L1 ,thenMPKK= Y.Thus, =MPKKY.Asweknow,MPKisthemarginalproductofcapital.Incompetitiveeconomy,itequalstherentalrateofcapital.Therefore, =MPKKYrepresentstheaveragecapitalshareofacountry.b.Whichparticularassumptionsareneeded?[Hint:Ashortanswerwithone(oratmosttwo)sentence(s)issucient.]Solution:Twoassumptionsareneededforthisprocedure:First,theproductionfunctiontakestheCobb-Douglasform;Second,theeconomyiscompetitive,whichensurestherentalrateofcapitalequalsitsmarginalproduct.2TheSolowModelwithProductivityGrowth[40Points]ConsideraSolowmodelinwhichtheproductionfunctionisY=F(K;AN)=K (AN)1 ,whereYistheaggregateoutput,Kcapital,Nlaborforce,andAlaborproductivity.Thisformoftechnologyissaidtobe1\labor-augmenting.AssumethatAisgrowingataconstantrate:A=A=g.ThecapitalaccumulationequationisKt+1Kt=Kt=sYtdKt,wheresavingrates,capitaldepreciationratedandpopulationgrowthratenareconstants.Wede neanewvariable,capitalpere ectivelabor,asfollows,~k=K=(AN).1.Derivethemarginalproductofcapital(MPK)fortheproductionfunctiongivenabove.Doesthefunctionexhibitdiminishingmarginalproductofcapital?Solution:Themarginalproductofcapitalis@Y@K= K 1(AN)1 :TakesecondderivativewithrespecttoK,wehave@2Y@K2= ( 1)K 2(AN)1 0:Sotheproductionfunctionexhibitsdiminishingmarginalproduct.2.Pleaseshowthefollowingdynamicsfor~k:~kt=s~k t(n+d+g)~kt:Solution:Kt=sYtdKt,pluginYt=K t(AtNt)1 ,wehaveKt=sK t(AtNt)1 dKt.DividebothsidesbyAtNt,wehaveKtAtNt=sK t(AtNt) dKtAtNt=s~k td~kt:(1)Noticethat~kt~kt=KtKtNtNtAtAt~kt=KtKt~ktNtNt~ktAtAt~ktKtAtNt=~kt+n~kt+g~kt:(2)Equation(1)and(2)thenshow~kt=s~k t(n+d+g)~kt:(3)3.Solveforthesteadystatelevelofcapitalpere ectivelabor,~k.Solution:Let~kt=0,wehave~k=(sn+g+d)1=(1 ).4.Similarly,de ne~y=Y=(AN)tobetheoutputpere ectivelaborandy=Y=Ntheoutputperlabor.Solveforboththesteadystatelevelofoutputpere ectivelabor~yandoutputperlabor,y.Solution:~y=(sn+g+d) =(1 )andyt=At(sn+g+d) =(1 ).5.SupposetheeconomystaysinsteadystatebeforePeriodT.AtPeriodT,theproductivitygrowthratefallspermanentlyfromgto0.2a.ShowhowthiseconomyconvergestothenewsteadystateinaSolow-diagram.Solution:Thefollowing gureshowshowtheeconomyconvergestoanewsteady-state:(n+d+g)k!(n+d)k!y!1*y!2*f(k!)sf(k!)k!2*k!1*Inthecasewithanpermanentdecreaseinproductivitygrowthrate,theeconomywillconvergetoanewsteadystatewithhigher~kand~y.BeforePeriodt=T,break-eveninvestmentequalsactualinvestmentandtheeconomyisatthesteadystate.AtPeriodt=T,theproductivitygrowthratedecreasestozero,thereforethebreak-eveninvestmentjumpsdown,whichimpliesthat~khastoincrease.Itinceasesuntilthepointwhereitreachesthenewsteadystate.b.Plotthetrajectoryoflog(y)againsttime,beforeandafterPeriodT.Solution:Thefollowing gureshowsthetrajectoryoflog(y):tTlog(yt)Bythepropertyoflogfunction,theslopeofthetrajectoryshouldbe4ytyt.Wehaveyt=~ytATakelogofbothsides:ln(yt)=ln(~yt)+ln(A)3Thentaketimederivativesofbothsides,thegrowthrateofoutputpercapitacanbewrittenas4ytyt=4~yt~yt+gBeforePeriodT,outputperlaborgrowsatarateofg,because4~yt~yt=0.AfterPeriodTthecapitalpere ectivelaborisincreasingtowardsanewsteadystate,buttheproductivitygrowthdropstozero,sooutputperlaborwillstillincreaseattheconvergencespeedof~yt,whichisdepictedaslessthanginthegraph.Aftertheeconomyrestsinthenewsteadystate,thegrowthrateofoutputperlaboriszero.c.Plotthetrajectoryofy=yagainsttime,beforeandafterPeriodT.Solution:Thefollowing gureshowsthetrajectoryofy=y,whichisthegrowthrateofoutputperlabor:tΔyyT3ConsumptionandSavingswithBorrowingConstraint[40Points]Considerarepresentativeconsumerwholivesforthreeperiods,heorshehasanexogenousendowmentstreamgivenbyy1;y2andy3andcanborrowandlendatagiveninterestrater,whichistheinterestrate.Assumethathe/shestartsoutwithnowealth(thatis,b1=0).Thediscountfactoris =1andutilityfunctionisincreasingandconcaveinconsumption.Theconsumer'sproblemis:maxc1;c2;c3u(c1)+u(c2)+u(c3)subjecttoc1+b2=y1c2+b3=y2+(1+r)b2c3=y3+(1+r)b3wherebtisthe nancialwealthinPeriodt.1.Writedowntheinter-temporalbudgetconstraint.Solution:Theinter-temporalbudgetconstraintfortheconsumerisc1+c21+r+c3(1+r)2=y1+y21+r+y3(1+r)242.DerivetheEulerequations.Solution:Wecantransformtheconsumer'soptimizationproblemasmaxc1;c2u(c1)+u(c2)+u[(1+r)2(y1c1)+(1+r)(y2c2)+y3]FirstOrderConditionsare:FOC(c1):u0(c1)+(1)(1+r)2u0(c3)=0FOC(c2):u0(c2)+(1)(1+r)u0(c3)=0Rearrangetheterms,wehavethefollowingEulerequations,u0(c1

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功