3.2.2加减消元法解二元一次方程组“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程问题,因此,一旦解决了方程问题,一切问题将迎刃而解!”——法国数学家笛卡儿2若a=b,那么ac=.1若a=b,那么a±c=.2、用代入法解方程的关键是什么?1、根据等式性质填空:思考:若a=b,c=d,那么a±c=b±d吗?b±cbc(等式性质1)(等式性质2)一元消元转化二元温故而知新:两个等式的左边之和(差)=右边之和(差)买3瓶苹果汁和5瓶橙汁共需21元,买2瓶苹果汁比5瓶橙汁少用11元。每瓶苹果汁和每瓶橙汁售价各是多少?若设每瓶苹果汁的售价为x元,每瓶橙汁的售价为y元,由题意得:3x+5y=215y-2x=11或3x+5y=212x–5y=-11用代入法怎样解下面的二元一次方程组呢?①②代入消元法把②变形得:代入①,不就消去x了了11522153-yxyx①②25y-11X=小华该方程组还有别的方法吗?认真观察此方程组中各个未知数的系数有什么特点,看还有没有其它的解法。并尝试一下能否求出它的解?11522153-yxyx①②把②变形得小明5y=2x+11③和y5y5互为相反数……看看小丽的思路,你能消去一个未知数吗?分析:352125-11xyxy①②3x+5y+2x-5y=10①左边+②左边=①右边+②右边5x=10x=2(3x+5y)+(2x-5y)=21+(-11)Soeasy!尝试发现、探究新知第一站—发现之旅11522153-yxyx①②把x=2代入①,得:y=3x=232yx所以原方程组的解是第二站—探究之旅二元一元加减消元法两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。11522153-yxyx①②由①+②得:5x=102x-5y=7①2x+3y=-1②由②-①得:8y=-8第三站—感悟之旅利用加减消元法解方程组时,在方程组的两个方程中:(1)方程组中同一个未知数的系数互为相反数,则可以直接消去这个未知数;(2)如果方程组中同一个未知数系数相等,则可以直接消去这个未知数把这两个方程中的两边分别相加,把这两个方程中的两边分别相减,你来说说:解方程组:40222yxyx①②解:②﹣①,得18x代入把18x①得2218y4y∴原方程组的解是418yx2240)()2(yxyx分别相加y1.已知方程组x+3y=172x–3y=6两个方程就可以消去未知数分别相减2.已知方程组25x-7y=1625x+6y=10两个方程就可以消去未知数x一、填空题:只要两边只要两边二、选择题1.用加减法解方程组6x+7y=-19①6x-5y=17②应用()A.①-②消去yB.①-②消去xC.②-①消去常数项D.以上都不对B2.方程组3x+2y=133x-2y=5消去y后所得的方程是()BA.6x=8B.6x=18C.6x=5D.x=18类比应用、闯关练习三、选择你喜欢的方法解下列方程组类比应用、闯关练习②②243823)1(yxyx12392)2(yxyx四、指出下列方程组求解过程中有错误步骤,并给予订正:7x-4y=45x-4y=-4解:①-②,得2x=4-4,x=0①②解:①-②,得2x=4+4,x=4把x=4代入①得7×4–4y=4解得y=6所以方程组的解是X=4y=6用加减法解下列方程组(2)(1)思考:方程组能用加减法解吗?基本思想:前提条件:加减消元:二元一元加减消元法解方程组基本思想是什么?前提条件是什么?同一未知数的系数互为相反数或相同系数相同相减系数互为相反数相加学习了本节课你有哪些收获?转化