PCB布线要点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

PCB布线要点1电源、地线的处理9t1`5I#E,J.o:c(1)、在电源、地线之间加上去耦电容。%t9N-B%Y:},T(2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5mm,对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地不能这样使用)(3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。8m!C!y!T5y.H1W-d|4Y2布线中网络系统的作用:`-P8G8W2D3K/G'b.S2Z标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。9S:d)Y1w7~#u7X/F7DCPU的数椐线4-6mil,电源线要看载流大小而定6s2~:`9U4q2w)g导线宽度最小不少于0.2mm,在高密度,高精度的印制电路中,导线宽度和间距一般可取0.3mm;导线宽度在大电流情况下还要考虑其温升。当铜箔厚度为50um,导线宽度1~1.5mm,通过电流为2A时,温升很小,所以公共地线应尽可能的粗,通常使用大于2~3mm的线条:k1iP2l1^,}:ps}.w']$Q$`U2G线条和焊盘尺寸:5C9y!b&s/d8o根据板材的不同,对于焊盘和线条的要求也不同:8O%X:^!N*S6O-c'V!~!R1.)V(i:@9g5dFR-4基材由于是由多层防弹布纤维经纬编织而成,3y6s9b9p6A7B1)一般线条宽度以及线间距可作至5mil左右,但考虑成品的报废率,一般将线条和间隙控制在7mil以上。再及,考虑到弯曲震动对铜箔的伤害问题,一般将线条控制在10mil以上。m!B,Z4Q&F:?3|2)如果焊盘孔不经孔化,焊盘一般不小于直径80mil。如果焊盘孔经过孔化处理,焊盘可以适当缩小,但为吃锡可靠,一般不小于直径50mil。-}7p8X6Z2A#p2.CEM-1基材是由多层高强度纸粘合,并在顶层辅以一层防弹布纤维而制成。(_.r]y;kl(v+\)b4C9M1)这种板子使用丝网油印工艺,应此线条宽度以及间距都不易控制,需要留出相当的裕量。一般线条宽度需要控制在12mil以上,线和线之间间距也需要控制在12mil以上,而大面积覆铜和相邻部分铜箔间距需要控制在18mil以上。+B3M&v6m*Q5y9v2)由于铜箔的附着力不佳,一般焊盘直径不应小于80mil,并且建议尽可能加大焊盘附近的铜箔,以增加附着力。2lL8U7Q;a(e*t!},w7P9T无论板材如何,线条和覆铜至板边、V型槽以及板内异型孔等的距离应该控制在40mil以上。⑶字符字符采用SansSerif字体。字体尺寸不小于40mil高、6mil宽。-w,R.M(|'i9l4C字符应尽量靠近元器件。如果器件旁没有足够的空位放置字符,必须将字符放置远离元件,则需要以箭头指示字符所属元件。一块板子上的字符只可以有水平(头向上)和竖直(头向左或向右)两个方向。1{-e)b*G/T!I%E%O(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2或4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。)Q*N6g!w)M&O$FPCB布线)f'N$w+h3I印刷线路板与元器件的高频特性:在高频情况下,印刷线路板上的走线、过孔、电阻、电容、接插件的分布电感与电容等不可忽略。电容的分布电感不可忽略,电感的分布电容不可忽略。电阻会产生对高频信号的反射和吸收。走线的分布电容也会起作用。当走线长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过走线向外发射。印刷线路板的过孔大约引起0.5pF的电容。一个集成电路本身的封装材料引入2~6pF电容。一个线路板上的接插件,有520nH的分布电感。一个双列直插的24引脚集成电路插座,引入4~18nH的分布电感。*C+g,~(U&{(Y)X其中元器件位号一般根据元器件种类以不同的英文字符表示,一般以英文首位字母表示::n'_7|0a9l7e'V5q电阻R,n1G:b2h:Q0C7q电容C0a&s&c3E6H'n7A1Q'I,g电感L*?,r;}%e5v变压器T二极管D三极管Q继电器RL+g)p3T9i8@+SN&R7m+D.G集成电路IC、U接插件CB、CZ(|5c6o4_!x;H2V:W[1.直角走线直角走线一般是PCB布线中要求尽量避免的情况,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI。传输线的直角带来的寄生电容可以由下面这个经验公式来计算:r)\1s9~:G,OC=61W(Er)1/2/Z0在上式中,C就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr指介质的介电常数,Z0就是传输线的特征阻抗。举个例子,对于一个4Mils的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量:T10-90%=2.2*C*Z0/2=2.2*0.0101*50/2=0.556ps*Z4?(u6t)C通过计算可以看出,直角走线带来的电容效应是极其微小的。9S;g,{)s8v/r由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算反射系数:ρ=(Zs-Z0)/(Zs+Z0),一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为0.1左右。而且,从下图可以看到,在W/2线长的时间内传输线阻抗变化到最小,再经过W/2时间又恢复到正常的阻抗,整个发生阻抗变化的时间极短,往往在10ps之内,这样快而且微小的变化对一般的信号传输来说几乎是可以忽略的。总的说来,直角走线并不是想象中的那么可怕。至少在GHz以下的应用中,其产生的任何诸如电容,反射,EMI等效应在TDR测试中几乎体现不出来,高速PCB设计工程师的重点还是应该放在布局,电源/地设计,走线设计,过孔等其他方面。2.差分走线差分信号(DifferentialSignal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在PCB设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。而承载差分信号的那一对走线就称为差分走线。差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面::c%q7N!K*U8Wa.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。b.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。*C)~6@9G-Wc.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(lowvoltagedifferentialsignaling)就是指这种小振幅差分信号技术。对于PCB工程师来说,最关注的还是如何确保在实际走线中能完全发挥差分走线的这些优势。也许只要是接触过Layout的人都会了解差分走线的一般要求,那就是“等长、等距”。等长是为了保证两个差分信号时刻保持相反极性,减少共模分量;等距则主要是为了保证两者差分阻抗一致,减少反射。“尽量靠近原则”有时候也是差分走线的要求之一。下面重点讨论一下PCB差分信号设计中几个常见的误区。!i:t$w)Y5[+e&i)V+{误区一:认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认识还不够深入。差分电路对于类似地弹以及其它可能存在于电源和地平面上的噪音信号是不敏感的。地平面的部分回流抵消并不代表差分电路就不以参考平面作为信号返回路径,其实在信号回流分析上,差分走线和普通的单端走线的机理是一致的,即高频信号总是沿着电感最小的回路进行回流,最大的区别在于差分线除了有对地的耦合之外,还存在相互之间的耦合,哪一种耦合强,那一种就成为主要的回流通路.在PCB电路设计中,一般差分走线之间的耦合较小,往往只占10~20%的耦合度,更多的还是对地的耦合,所以差分走线的主要回流路径还是存在于地平面。当地平面发生不连续的时候,无参考平面的区域,差分走线之间的耦合才会提供主要的回流通路,尽管参考平面的不连续对差分走线的影响没有对普通的单端走线来的严重,但还是会降低差分信号的质量,增加EMI,要尽量避免。也有些设计人员认为,可以去掉差分走线下方的参考平面,以抑制差分传输中的部分共模信号,但从理论上看这种做法是不可取的,阻抗如何控制?不给共模信号提供地阻抗回路,势必会造成EMI辐射,这种做法弊大于利。(w4}!B$?-I8n-e误区二:认为保持等间距比匹配线长更重要。在实际的PCB布线中,往往不能同时满足差分设计的要求。由于管脚分布,过孔,以及走线空间等因素存在,必须通过适当的绕线才能达到线长匹配的目的,但带来的结果必然是差分对的部分区域无法平行.PCB差分走线的设计中最重要的规则就是匹配线长,其它的规则都可以根据设计要求和实际应用进行灵活处理。&l7LR1G$C8fx(c误区三:认为差分走线一定要靠的很近。让差分走线靠近无非是为了增强他们的耦合,既可以提高对噪声的免疫力,还能充分利用磁场的相反极性来抵消对外界的电磁干扰。虽说这种做法在大多数情况下是非常有利的,但不是绝对的,如果能保证让它们得到充分的屏蔽,不受外界干扰,那么我们也就不需要再让通过彼此的强耦合达到抗干扰和抑制EMI的目的了。如何才能保证差分走线具有良好的隔离和屏蔽呢?增大与其它信号走线的间距是最基本的途径之一,电磁场能量是随着距离呈平方关系递减的,一般线间距超过4倍线宽时,它们之间的干扰就极其微弱了,基本可以忽略。此外,通过地平面的隔离也可以起到很好的屏蔽作用,这种结构在高频的(10G以上)IC封装PCB设计中经常会用采用,被称为CPW结构,可以保证严格的差分阻抗控制(2Z0).(}3D2U$\'K$d1w1S5C7~$T差分走线也可以走在不同的信号层中,但一般不建议这种走法,因为不同的层产生的诸如阻抗、过孔的差别会破坏差模传输的效果,引入共模噪声。此外,如果相邻两层耦合不够紧密的话,会降低差分走线抵抗噪声的能力,但如果能保持和周围走线适当的间距,串扰就不是个问题。在一般频率(GHz以下),EMI也不会是很严重的问题,实验表明,相距500Mils的差分走线,在3米之外的辐射能量衰减已经达到60dB,足以满足FCC的电磁辐射标准,所以设计者根本不用过分担心差分线耦合不够而造成电磁不兼容问题。9C.G/\4P(u#Q2t8_0X&m(M;N9l3.蛇形线+L)z,g(Z.u$J-F'k9Q.Y4q蛇形线是Layout中经常使用的一类走线方式。其主要目的就是为了调节延时,满足系统时序设计要求。设计者首先要有这样的认识:蛇形线会破坏信号质量,改变传输延时,布线时要尽量避免使用。但实际设计中,为了保证信号有足够的保持

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功