30220114J.InfraredMillim.WavesVol.30No.2April20111001-9014201102-0124-072010-05-242010-10-09Receiveddate2010-05-24reviseddate2010-10-09407011208632006AA12010840920162008B331984-E-mailcici5201@163.com.*E-maillicj@nercita.org.cn.LAI12122*22221.3100292.100097LAI....PCALAITP79AEstimatingleafareaindexfromremotesensingdatabasedondatasegmentationandprincipalcomponentanalysisDONGYing-Ying12WANGJi-Hua12LICun-Jun2*YANGGui-Jun2SONGXiao-Yu2GUXiao-He2HUANGWen-Jiang21.InstituteofAgriculturalRemoteSensing&InformationSystemApplicationZhejiangUniversityHangzhou310029China2.NationalEngineeringResearchCenterforInformationTechnologyinAgricultureBeijing100097ChinaAbstractAccordingtotheunsatisfactoryandlowerefficiencyofclassicalstatisticalmodelsinleafareaindexLAIesti-mationanewinversionmethodcombinedwithphenology-baseddatasegmentationandprincipalcomponentanalysiswasproposedinthispaper.Inthemethodprincipalcomponentsofspectraldataanddifferentialordifferencespectraldatawerechosenasindependentvariablesandphenology-baseddatasegmentationwasintegratedintodataprocessinginordertoimproveestimationaccuracy.Inadditionmulti-scalewasinvolvedinmodeling.Winterwheatwasselectedasexperi-mentalobjectfornumericalsimulationandcomparativeanalysis.Resultsnotonlyshowedhighprecisioninwholeestimationandeffectivelyimproveddatasaturationbutalsomanifestedstabilityandrobustnessunderfullscan.KeywordsprincipalcomponentanalysisPCAphenologydatasegmentationmulti-scalemodelingleafareaindexLAIPACS41.20.-qLeafAreaIndexLAI、1.LAI2.、、、、1.、、.、、LAI13~5.2LAI.67LAI.8、、..11.12009211、19、9428、81410.2009429517.ASDASDFieldSpecProFR350~2500nm350~1000nm1.4nm1000~2500nm2nm.1.3m25°20.50cm×4.1.21.2.1350~1354nm5nm.HJ-11.、.PrincipalComponentAnalysisPCA1.HJ-11HJ-1CCDFig.1SpectralresponsecurveofresourcessatelliteHJ-1CCDcameras.482820.2/31/3.1n=48、n=32、n=16±30%±20%±30%±20%.1LAI、、Table1StatisticalparametersofLAIforallsamplescali-brationsamplesandvalidationsamples±30%±20%±30%±20%7.497.407.417.427.117.317.311.211.281.291.261.531.351.304.013.994.014.004.044.004.033.633.623.643.623.693.633.653.943.913.923.933.973.953.941.691.681.701.711.671.711.712.862.842.902.912.822.932.910.240.250.240.240.210.240.24-0.90-0.91-1.01-1.01-1.05-0.96-0.961.2.2LAI1.21~7.499.10.52130DataSegmentation11.LAI<33<LAI<5LAI>510.35..HJ-1LAI.、、LAILAI.HJ-112.LAI21.2HJ-1.3NDVI、SAVI、ARVI、EVI.1.2.3、2.101.1.2Fig.2PlanofnumericalexperimentsNDVI、SAVI、ARVI、EVI1.3.2Table2ThreekindsofassessmentindexesRMSERMSE=∑ni=1di/n-1槡ndi.R2R2=∑ni=1xi-x2yi-y()[]2∑ni=1xi-x2∑ni=1yi-y()[]2xi、x、yi、y、、、、n.Accuracyy=Accuracy·xxy.3Table3FourkindsofvegetationindexesNDVINDVI=ρNir-ρRedρNir+ρRedSAVISAVI=1+LρNir-ρRedρNir+ρRed+LL=01ARVIARVI=ρNir-ρRBρNir+ρRBρRB=ρRed-γρBlue-ρRedγ=1EVIEVI=2ρNir-ρRedρNir+c1ρRed+c2ρBlue+Lc1=6c2=7.5L=1ρNir、ρRed、ρBlur、760~900nm、630~690nm450~520nm.6212LAI.LAI、ND-VILAI、NDVI12LAI.LAINDVI.3HJ-1.22.1、LAI.4.99.5%、64.9%、40.4%.3Fig.3Saturationpoint4M1/2/3/4/5Spectral、Differential-1、Differ-ential-2、Spectral+Differential、Spectral+Differenti-al+Datasegmentation2.M2M1M34、Fig.4Contributionandcumulativecontributionoffirstsevenprincipalcomponentsofgroundhyperspectralfirst-orderandsec-ond-orderdifferentialSpectral.M4M1、M2、M3.M5RMSE0R2Accu-racy1.M5.2.2HJ-1HJ-12.1...5HJ-M1/2/3/4HJ、HJ+Datasegmentation、HJ+PCA、HJ+PCA+Datasegmentation2.HJ-M2HJ-M1HJ-M4HJ-M3.HJ-M3HJ-M1.HJ-M4HJ-M2.HJ-1LAI.721304Table4Resultsofnumericalexperimentsbasedongroundhyperspectral±30%±20%±30%±20%±30%±20%M10.991.001.000.690.710.700.950.970.98M20.870.890.890.750.750.751.021.051.07M30.890.900.900.740.760.751.191.241.23M40.900.910.930.730.740.731.041.061.06M50.690.690.720.840.840.831.011.061.085HJ-1Table5ResultsofnumericalexperimentsbasedonHJ-1multispectral±30%±20%±30%±20%±30%±20%HJ-M11.021.041.050.700.710.700.930.950.95HJ-M20.750.710.730.840.850.840.900.950.94HJ-M31.021.031.040.690.700.700.910.930.93HJ-M40.700.630.640.860.870.870.961.021.005Fig.5Comparisonanalysisofgroundhyperspectralnumericalexperiments2.356HJ-1“○”“△”“□”“●”“▲”“■”NDVI、SAVI、ARVI、EVINDVI、SAVI、ARVI、EVI.78“☆”“★”.56RMSER2Accuracy1.5R213.1~45.8%RMSE22.1~48.8%.6R22.46~50.5%RMSE6.53~48.1%.RMSER2Accuracy1.5R23.69~46.2%RMSE1.0~13.7%.6R213.2~55.7%RMSE16.1~17.6%.78.8212LAI、..56±30%±20%.12.2%.3921308HJ-1Fig.8ResultsofHJ-1multispectralnumericalexperiments、.、.LAI....REFERENCES1WANGJi-HuaZHAOChun-JiangHUANGWen-Jiangetal.BasisandApplicationofAgricultureQuantitativeRemoteSensingM.BeijingSciencePress..2008.2VerstraeteMMPintyBMyneniRB.Potentialandlimi-tationsofinformationextractionontheterrestrialbiospherefromsatelliteremotesensingJ.RemoteSensingofEnvi-ronment1996582201—214.3RondeauxGStevenMBaretF.Optimizationofsoil-ad-justedvegetationindicesJ.RemoteSensingofEnviron-ment199655295—107.4YANGFeiZHANGBaiSONGKai-Shanetal.Compari-sonofmethodsforestimatingsoybeanleafareaindexJ.SpectroscopyandSpectralAnalysis..200828122951—2955.5WANGXiu-ZhenHUANGJing-FengLIYun-Meietal.ThestudyonhyperspectralremotesensingestimationmodelsaboutLAIofriceJ.JournalofRemoteSensing..20048181—88.6WENCheng-LinZHOUDong-Hua.TheroyandApplicationofMultiscaleM.BeijingTsinghuaUn