人教版6.3实数第二课时课件ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

6.3实数(2)(1)会求实数的相反数和绝对值。(2)实数的绝对值性质探究。(3)实数运算:加,减,乘,除,乘方,开方。学习目标学习重点:知道有理数的运算律和运算性质同样适合于实数的运算,并会进行简单的运算。1.无理数也有相反数吗?怎么表示?2.有绝对值吗?怎么表示?3.有倒数吗?怎么表示?带着问题自学课本54页“思考”探究的相反数是;的相反数是;的相反数是;20-2-10122220a的相反数是-a探究20-2-10122220正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.22在实数范围内,相反数、绝对值的意义和有理数范围内的相反数、绝对值的意义完全一样。a是一个实数,它的相反数为-a0的相反数是_______的相反数是_______2的相反数是_____________2__________02020一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0(1)a是一个实数,它的相反数为,绝对值为;(2)如果a0,那么它的倒数为。aa1a在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。(3)正实数的绝对值是,0的绝对值是,负实数的绝对值是.它本身0它的相反数在实数范围内,相反数、绝对值的意义和有理数范围内的相反数、绝对值的意义完全一样。a是一个实数,实数a的相反数为-a。一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是02、绝对值性质及应用1)一个正数的绝对值是______,一个负数的绝对值是_________,零的绝对值是____。aaaaaa00002)对任何实数a,总有︱a︱____0.它本身它的相反数零≥例题(1)分别写出-,的相反数;63.14(2)指出5,13各是什么数的相反数(3)求364的绝对值(4)已知一个数的绝对值是3,求这个数.216212练习2、填空:(1)的相反数是__________(5)绝对值是_________3114.33121(2)的倒数是____,14.3(3)||=___________6(4)绝对值等于的数是_________7的平方是___.7(6)比较大小:-734填空:(1)的相反数是__________(2)的相反数是(3)___________(4)绝对值等于的数是_________333355665、绝对值等于的数是。实力神枪手——看谁百发百中填空32、的相反数是,绝对值是.54、比较大小:-7501、正实数的绝对值是,0的绝对值是,负实数的绝对值是.它本身0它的相反数3353、一个数的绝对值是,则这个数是.2p2p合作学习请同学们总结有理数的运算律和运算法则1.交换律:加法a+b=b+a乘法a×b=b×a2.结合律:加法(a+b)+c=a+(b+c)乘法(a×b)×c=a×(b×c)3.分配律:a×(b+c)=a×b+a×c注:有理数的运算律和运算法则在实数范围内同样适用实数的运算顺序先算乘方和开方,再算乘除,最后算加减。如果遇到括号,则先进行括号里的运算132223323例1:求下列各式的值。()()() 解:(1)(2)303)22(32)23(353)23(3233)(加法结合律)(分配律例:计算(结果保留小数点后两位)(1)52π;(2)3注意:计算过程中要多保留一位!(1)521.7321.4142.45解:π2.236+3.1425.38(2)33.实数运算当数从有理数扩充到实数以后,实数之间不仅可以进行加减乘除乘方运算,又增加了非负数的开平方运算,任意实数可以进行开立方运算。进行实数运算时,有理数的运算法则及性质等同样适用。练习:223(4)23233253323231随堂练习判断:1.实数不是有理数就是无理数。()2.无理数都是无限不循环小数。()3.无理数都是无限小数。()4.带根号的数都是无理数。()5.无理数一定都带根号。()6.两个无理数之积不一定是无理数。()7.两个无理数之和一定是无理数。()×××1、下列各数中,互为相反数的是()A与B与C与D与33122)2(2)1(31552、的值是()ABCD5235515255523、在数轴上距离表示-2的点是个单位长度的数是。3CC2323或4.-是的相反数。π-3.14的相反数是。663.14-π5、设对应数轴上的点是A,对应数轴上的点是B,那么A、B间的距离是。336、在数轴上与原点的距离是的点所表示的数是。627、求下列各数的相反数:,23,43,23.253262分类性质思想定义按性质分类有理数和无理数统称为实数相反数绝对值分类讨论思想按定义分类类比思想课堂小结热身运动(一)1.下列各数不是有理数的是()0.21210A.3.14B.-πC.D.2.在3197544,,,,中是无理数的有()A.2个B.3个C.4个D.1个BA热身运动(二)56判断正误(1)-2是负数(2)π是正数(3)1-π是正数(4)是正数(5)是负数()()()()()√√√√×热身运动(三)1.3的相反数是.2.的相反数是.3.的倒数是.4.的倒数是.5.|-5|=,.=.6.|-π|=,=.312|13||21|3|17|-333232251321317计算332728912512541

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功