DSGE模型讨论之五——CES-functions-and-Dixit-Stiglitz-Formu

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

CESfunctionsandDixit-StiglitzFormulationWeijieChen1DepartmentofPoliticalandEconomicStudiesUniversityofHelsinki12September,201105100510010203040CapitalLabourCapitalLabour02468100123456789101Anysuggestionandcommentpleasesendemailto:weijie.chen@helsinki. AbstractConstantelasticityofsubstitution(CES)functionsarethemostextensivelyusedfunctionalformineconomicssofar,buttextbooksseldomgivegoodandenoughillustrationsonhowtousethem.ThepurposeofthisnoteistoshowyouhowitcanbederivedanditscontributiontoDixit-Stiglitzformulation.1CESfunctionsWestartwiththemostbasicCESfunction,u(x1;x2)=(x1+x2)1where1.Letus rstverifythisisaCESfunction.Takepartialderivativesw.r.t.bothxi's,@u(x1;x2)@x1=1(x1+x2)11x11=(x1+x2)1x11(1)@u(x1;x2)@x2=1(x1+x2)11x12=(x1+x2)1x12(2)Thenrecallhowwede nepriceelasticityofdamand,p=x=xp=pMostoftime,weworkwithcontinuouscase,p=dx=xdp=p=dxdppxWeassumeonlyonegoodinthiscase.Thepriceelasticityofsubstitutionlookssimilar,butalittlebitcom-plicated,sinceitisaboutsubstitution,weneedatleasttwogoods,sayx1andx2.Thisisaveryimportantconceptincomparativestatics,de nedas:therelativechangeoftheratiooftheconsumptiongoodsx1andx2overtherelativechangeoftheratiooftheaccordingpricep1andp2,sub=d(x1=x2)x1=x2d(p2=p1)p2=p1Weneedtoshowthecaseattheoptimum,thusthepoint-elasticityattheoptimumis,sub=d(x1=x2)x1=x2d(p2=p1)p2=p1=d(x1=x2)x1=x2d(u2=u1)u2=u1=dx1x2dp2p1p2p1x1x2(3)1whereu1=@u=@x1,u2=@u=@x2.Attheoptimum,p2p1=u2u1Use(1)and(2),u2u1=(x1+x2)1x12(x1+x2)1x11=x2x11Thusx2x11=p2p1x1x2=p2p111(4)Wecanuse(4)tocalculate,dx1x2dp2p1=11p2p11(5)Thenaccordingto(3)weneedp2=p1x1=x2=p2p1p2p111=p2p1111=p2p121(6)Multiply(5)and(6),following(3)dx1x2dp1p2p1p2x1x2=11p1p221p1p221=11Wehaveveri editisCESfunction,theelasticityofsubstitutionis1=(1)whichisaconstant.1.1GeneralCaseofCESThemostgeneralfunctionalformofCESisgivenbyF=A 11x11+ 12x1212whereAisaconstantorastochasticprocess(cf.technologyparameterAinCobb-Douglasproductionfunction), denotesdistributionparameterastheexponentinC-Dfunction,besidesweassume 1+ 2=1.Inthiscase,isexactlytheelasticityofsubstitutionparameteraswehaveseenin rstcaseassub.Thepurposeoftheouterexponent1isdesignedtorenderthefunctionas rst-orderhomogeneous(linearhomogeneous).Wecanshowthisasfollows:F=A 11(tx1)1+ 12(tx2)11=At1 11x11+ 12x121=tA 11x11+ 12x121Asthe rstcase,wede netheelasticityofsubstitutionatoptimum(point-elasticity)assub=d(x1=x2)x1=x2d(p2=p1)p2=p1=d(x1=x2)x1=x2d(F2=F1)F2=F1=dx1x2dp2p1p2p1x1x2(7)Takepartialderivativew.r.t.x1andx2,F1=A1 11x11+ 12x12111 11x111=A 11x11 11x11+ 12x1211=A 11x11F1=A 11Fx11(8)Similarly,F2=A 1 2Fx21(9)Divide(9)by(8),F2F1= 2 11x1x21=p2p1(10)3Nextweshallisolatex1x2ononesideatpointofoptimum, 2 1x1x2=p2p1x1x2=p2p1 1 2(11)Togetp2p1=x1x2,wemodify(11),x1x2=p2p1p2p11 1 2x1x2p2p1=p2p11 1 2p2p1x1x2=p2p11 2 1(12)From(11),wegetdx1x2dp2p1=p2p11 1 2(13)Accordingto(7),wemultiply(13)and(12),p2p11 1 2p2p11 2 1=Thuswehavecon rmedthepropertyofCESfunction.Thelargerthethegreatthesubstitutability,if=0,bothproductshavetobeina xedproportion,suchasrightandleftshoes.1.2Cobb-DouglasFunctionAsTheSpecialCaseWewillseeinthissectionthatCobb-DouglasfunctionissimplyalimitingversionofCESfunction,whichrendersC-Dfunctionasaspecialcase.Let'sgobacktothegeneralCESform,F=A 11x11+ 12x121(14)4when!0,(14)willapproachesC-Dfunction.Howeverwecannotsimplyequalto1here,sincethedenominatorofouterexponentisunde ned.Thus,themostnaturalwaytoproceedistouseL0H^opital0srule.FirstdivideFbyAandtakenaturallog,lnFA=ln 11x11+ 12x121=m()n()(15)Toseewhetheritis00form,weset=1,thedenominatorobviouslyequals0,andnumeratorcanbeshownln( 1x01+ 2x02)=ln1=0WecanperformL0H^opital0sruleto(15),butwe nditwillbecomeex-tremelymessyinnotationtohandlethisproblem,sincewehavetousethreetimesderivativeproductruleinanestedmannerandexponentderivativerule.ActuallyitisunnecessarytoworkonsuchageneralfunctiontoderivetheC-Dfunction,wecansimplify(15)abitandkeepitsCESfeatures.Therewillbesomeslightnotationchangeinthissimpli edversion,F=A K+(1 )L1(16)asyoucanseewereplacex1andx2bycapitalKandlabourL.Aand havetheircorrespondingmeaninginC-Dfunction,butnotyet.Besides,wecannoticethatwehaveset11=implicitly,if=1then=1.Thusif!0,(16)approachesC-Dfunction.Divide(16)byAthentakenaturallog,lnFA=ln[ K+(1 )L]=m()n()Toseethe00,simplyplug0intonumerator,ln[ +1 ]=0.Next,useL0H^opital0srulem0()n0()=1 K+(1 )L[ KlnK(1 )LlnL]5Thenset=0,weget lnK+(1 )lnL +1 = lnK+(1 )lnL=lnK +lnL1 =lnK L1 SincewehavedividedbyAandtakingnaturallog,weneedtoperformtheinverseoperationtorecovertheCESform,thusAelnK L1 =AK L1 (17)whichisthestandardformofCobb-Douglasfunction.1.3CESProductionFunctionWehavealreadyseentheCESproductionfunctionwithinputcap

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功