CESfunctionsandDixit-StiglitzFormulationWeijieChen1DepartmentofPoliticalandEconomicStudiesUniversityofHelsinki12September,201105100510010203040CapitalLabourCapitalLabour02468100123456789101Anysuggestionandcommentpleasesendemailto:weijie.chen@helsinki.AbstractConstantelasticityofsubstitution(CES)functionsarethemostextensivelyusedfunctionalformineconomicssofar,buttextbooksseldomgivegoodandenoughillustrationsonhowtousethem.ThepurposeofthisnoteistoshowyouhowitcanbederivedanditscontributiontoDixit-Stiglitzformulation.1CESfunctionsWestartwiththemostbasicCESfunction,u(x1;x2)=(x1+x2)1where1.LetusrstverifythisisaCESfunction.Takepartialderivativesw.r.t.bothxi's,@u(x1;x2)@x1=1(x1+x2)1 1x 11=(x1+x2)1 x 11(1)@u(x1;x2)@x2=1(x1+x2)1 1x 12=(x1+x2)1 x 12(2)Thenrecallhowwedenepriceelasticityofdamand,p=x=xp=pMostoftime,weworkwithcontinuouscase,p=dx=xdp=p=dxdppxWeassumeonlyonegoodinthiscase.Thepriceelasticityofsubstitutionlookssimilar,butalittlebitcom-plicated,sinceitisaboutsubstitution,weneedatleasttwogoods,sayx1andx2.Thisisaveryimportantconceptincomparativestatics,denedas:therelativechangeoftheratiooftheconsumptiongoodsx1andx2overtherelativechangeoftheratiooftheaccordingpricep1andp2,sub=d(x1=x2)x1=x2d(p2=p1)p2=p1Weneedtoshowthecaseattheoptimum,thusthepoint-elasticityattheoptimumis,sub=d(x1=x2)x1=x2d(p2=p1)p2=p1=d(x1=x2)x1=x2d(u2=u1)u2=u1=d x1x2d p2p1p2p1x1x2(3)1whereu1=@u=@x1,u2=@u=@x2.Attheoptimum,p2p1=u2u1Use(1)and(2),u2u1=(x1+x2)1 x 12(x1+x2)1 x 11=x2x1 1Thusx2x1 1=p2p1x1x2=p2p1 1 1(4)Wecanuse(4)tocalculate,d x1x2d p2p1= 1 1p2p11 (5)Thenaccordingto(3)weneedp2=p1x1=x2=p2p1 p2p11 1=p2p11 1 1=p2p1 2 1(6)Multiply(5)and(6),following(3)d x1x2d p1p2p1p2x1x2=1 1p1p22 1p1p2 2 1=1 1WehaveverieditisCESfunction,theelasticityofsubstitutionis1=( 1)whichisaconstant.1.1GeneralCaseofCESThemostgeneralfunctionalformofCESisgivenbyF=A11x 11+12x 12 12whereAisaconstantorastochasticprocess(cf.technologyparameterAinCobb-Douglasproductionfunction),denotesdistributionparameterastheexponentinC-Dfunction,besidesweassume1+2=1.Inthiscase,isexactlytheelasticityofsubstitutionparameteraswehaveseeninrstcaseassub.Thepurposeoftheouterexponent 1isdesignedtorenderthefunctionasrst-orderhomogeneous(linearhomogeneous).Wecanshowthisasfollows:F=A11(tx1) 1+12(tx2) 1 1=At 111x 11+12x 12 1=tA11x 11+12x 12 1Astherstcase,wedenetheelasticityofsubstitutionatoptimum(point-elasticity)assub=d(x1=x2)x1=x2d(p2=p1)p2=p1=d(x1=x2)x1=x2d(F2=F1)F2=F1=d x1x2d p2p1p2p1x1x2(7)Takepartialderivativew.r.t.x1andx2,F1=A 111x 11+12x 12 1 1 111x 1 11=A11x 1111x 11+12x 121 1=A11x 11F1=A11Fx11(8)Similarly,F2=A12Fx21(9)Divide(9)by(8),F2F1=211x1x21=p2p1(10)3Nextweshallisolatex1x2ononesideatpointofoptimum,21x1x2=p2p1x1x2=p2p112(11)Togetp2p1=x1x2,wemodify(11),x1x2=p2p1p2p1 112x1x2p2p1=p2p1 112p2p1x1x2=p2p11 21(12)From(11),wegetd x1x2d p2p1=p2p1 112(13)Accordingto(7),wemultiply(13)and(12),p2p1 112p2p11 21=ThuswehaveconrmedthepropertyofCESfunction.Thelargerthethegreatthesubstitutability,if=0,bothproductshavetobeinaxedproportion,suchasrightandleftshoes.1.2Cobb-DouglasFunctionAsTheSpecialCaseWewillseeinthissectionthatCobb-DouglasfunctionissimplyalimitingversionofCESfunction,whichrendersC-Dfunctionasaspecialcase.Let'sgobacktothegeneralCESform,F=A11x 11+12x 12 1(14)4when!0,(14)willapproachesC-Dfunction.Howeverwecannotsimplyequalto1here,sincethedenominatorofouterexponentisundened.Thus,themostnaturalwaytoproceedistouseL0H^opital0srule.FirstdivideFbyAandtakenaturallog,lnFA=ln11x 11+12x 12 1=m()n()(15)Toseewhetheritis00form,weset=1,thedenominatorobviouslyequals0,andnumeratorcanbeshownln(1x01+2x02)=ln1=0WecanperformL0H^opital0sruleto(15),butwenditwillbecomeex-tremelymessyinnotationtohandlethisproblem,sincewehavetousethreetimesderivativeproductruleinanestedmannerandexponentderivativerule.ActuallyitisunnecessarytoworkonsuchageneralfunctiontoderivetheC-Dfunction,wecansimplify(15)abitandkeepitsCESfeatures.Therewillbesomeslightnotationchangeinthissimpliedversion,F=AK +(1 )L 1(16)asyoucanseewereplacex1andx2bycapitalKandlabourL.AandhavetheircorrespondingmeaninginC-Dfunction,butnotyet.Besides,wecannoticethatwehaveset1 1= implicitly,if=1then=1.Thusif!0,(16)approachesC-Dfunction.Divide(16)byAthentakenaturallog,lnFA= ln[K +(1 )L ]=m()n()Toseethe00,simplyplug0intonumerator, ln[+1 ]=0.Next,useL0H^opital0srulem0()n0()= 1K +(1 )L [ K lnK (1 )L lnL]5Thenset=0,wegetlnK+(1 )lnL+1 =lnK+(1 )lnL=lnK+lnL1 =lnKL1 SincewehavedividedbyAandtakingnaturallog,weneedtoperformtheinverseoperationtorecovertheCESform,thusAelnKL1 =AKL1 (17)whichisthestandardformofCobb-Douglasfunction.1.3CESProductionFunctionWehavealreadyseentheCESproductionfunctionwithinputcap