2017初高中数学衔接教材现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。高中则在使用。另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。新的课程改革,难免会导致很多知识的脱节和漏洞。本书当然也没有详尽列举出来。我们会不断的研究新课程及其体系。将不遗余力地找到新的初高中数学教材体系中存在的不足,加以补充和完善。2目录第一章数与式1.1数与式的运算1.1.1绝对值1.1.2乘法公式1.1.3二次根式1.1.4分式1.2分解因式第二章二次方程与二次不等式2.1一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2二次函数2.2.1二次函数y=ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幂定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)31.1数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.aaaaaa绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:ba表示在数轴上,数a和数b之间的距离.例1解不等式:13xx>4.解法一:由01x,得1x;由30x,得3x;①若1x,不等式可变为(1)(3)4xx,即24x>4,解得x<0,又x<1,∴x<0;②若12x,不等式可变为(1)(3)4xx,即1>4,∴不存在满足条件的x;③若3x,不等式可变为(1)(3)4xx,即24x>4,解得x>4.又x≥3,∴x>4.综上所述,原不等式的解为x<0,或x>4.解法二:如图1.1-1,1x表示x轴上坐标为x的点P到坐标为1的点A之间的距离|PA|,即|PA|=|x-1|;|x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|=|x-3|.所以,不等式13xx>4的几何意义即为|PA|+|PB|>4.由|AB|=2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x<0,或x>4.练习1.填空:(1)若5x,则x=_________;若4x,则x=_________.(2)如果5ba,且1a,则b=________;若21c,则c=________.2.选择题:下列叙述正确的是()(A)若ab,则ab(B)若ab,则ab(C)若ab,则ab(D)若ab,则ab3.化简:|x-5|-|2x-13|(x>5).13ABx04CDxP|x-1||x-3|图1.1-141.1.2.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()ababab;(2)完全平方公式222()2abaabb.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()abaabbab;(2)立方差公式2233()()abaabbab;(3)三数和平方公式2222()2()abcabcabbcac;(4)两数和立方公式33223()33abaababb;(5)两数差立方公式33223()33abaababb.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1计算:22(1)(1)(1)(1)xxxxxx.解法一:原式=2222(1)(1)xxx=242(1)(1)xxx=61x.解法二:原式=22(1)(1)(1)(1)xxxxxx=33(1)(1)xx=61x.例2已知4abc,4abbcac,求222abc的值.解:2222()2()8abcabcabbcac.练习1.填空:(1)221111()9423abba();(2)(4m22)164(mm);(3)2222(2)4(abcabc).2.选择题:(1)若212xmxk是一个完全平方式,则k等于()(A)2m(B)214m(C)213m(D)2116m(2)不论a,b为何实数,22248abab的值()(A)总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如(0)aa的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如232aabb,22ab等是无理式,而22212xx,222xxyy,2a等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,5我们就说这两个代数式互为有理化因式,例如2与2,3a与a,36与36,2332与2332,等等.一般地,ax与x,axby与axby,axb与axb互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式(0,0)ababab;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2.二次根式2a的意义2aa,0,,0.aaaa例1将下列式子化为最简二次根式:(1)12b;(2)2(0)aba;(3)64(0)xyx.解:(1)1223bb;(2)2(0)abababa;(3)633422(0)xyxyxyx.例2计算:3(33).解法一:3(33)=333=3(33)(33)(33)=33393=3(31)6=312.解法二:3(33)=333=33(31)=131=31(31)(31)=312.例3试比较下列各组数的大小:(1)1211和1110;(2)264和226-.解:(1)∵1211(1211)(1211)11211112111211,1110(1110)(1110)11110111101110,又12111110,∴1211<1110.(2)∵226(226)(226)2226,1226226--+-++又4>22,6∴6+4>6+22,∴264<226-.例4化简:20042005(32)(32).解:20042005(32)(32)=20042004(32)(32)(32)=2004(32)(32)(32)=20041(32)=32.例5化简:(1)945;(2)2212(01)xxx.解:(1)原式545422(5)22522(25)2552.(2)原式=21()xx1xx,∵01x,∴11xx,所以,原式=1xx.例6已知3232,3232xy,求22353xxyy的值.解:∵223232(32)(32)103232xy,323213232xy,∴22223533()1131011289xxyyxyxy.练习1.填空:(1)1313=_____;(2)若2(5)(3)(3)5xxxx,则x的取值范围是_____;(3)4246543962150_____;(4)若52x,则11111111xxxxxxxx________.2.选择题:等式22xxxx成立的条件是()(A)2x(B)0x(C)2x(D)02x3.若22111aaba,求ab的值.4.比较大小:2-35-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如AB的式子,若B中含有字母,且0B,则称AB为分式.当M≠0时,分式AB具有下列性质:7AAMBBM;AAMBBM.上述性质被称为分式的基本性质.2.繁分式像abcd,2mnpmnp这样,分子或分母中又含有分式的分式叫做繁分式.例1若54(2)2xABxxxx,求常数,AB的值.解:∵(2)()2542(2)(2)(2)ABAxBxABxAxxxxxxxxx,∴5,24,ABA解得2,3AB.例2(1)试证:111(1)1nnnn(其中n是正整数);(2)计算:1111223910;(3)证明:对任意大于1的正整数n,有11112334(1)2nn.(1)证明:∵11(1)11(1)(1)nnnnnnnn,∴111(1)1nnnn(其中n是正整数)成立.(2)解:由(1)可知111122391011111(1)()()2239101110=910.(3)证明:∵1112334(1)nn=111111()()()23341nn=1121n,又n≥2,且n是正整数,∴1n+1一定为正数,∴1112334(1)nn<12.例3设cea,且e>1,2c2-5ac+2a2=0,求e的值.解:在2c2-5ac+2a2=0两边同除以a2,得2e2-5e+2=0,∴(2e-1)(e-2)=0,∴e=12<1,舍去;或e=2.∴e=2.练习1.填空题:对任意的正整数n,1(2)nn(112nn);2.选择题:若223xyxy,则xy=()8(A)1(B)54(C)45(D)653.正数,xy