不等式(组)应用题学习目标:能灵活运用方程与不等式组来解决实际问题。A型B型价格(万元/台)1210处理污水量(吨/月)240200年消耗费(万元/台)111、为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)解:(1)设购买污水处理设备A型x台,则B型(10-x)台.12x+10(10-x)≤105,解得x≤2.5.∵x取非负整数,∴x可取0,1,2.故有三种购买方案:购A型0台、B型10台;A型1台,B型9台;A型2台,B型8台.(2)由题意得:240x+200(10-x)≥2040,解得x≥1,所以x为1或2.当x=1时,购买资金为:12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元),所以为了节约资金,应选购A型1台,B型9台.(3)10年企业自己处理污水的总资金为:102+1×10+9×10=202(万元),若将污水排到污水厂处理:2040×12×10×10=2448000(元)=244.8(万元).节约资金:244.8-202=42.8(万元).2.从2008年12月1日起,国家开始实施家电下乡计划,国家按照农民购买家电金额的13%予以政策补贴,某商场计划购进A、B两种型号的彩电共100台,已知该商场所筹购买的资金不少于222000元,但不超过222800元,国家规定这两种型号彩电的进价和售价如下表:(1)农民购买哪种型号的彩电获得的政府补贴要多些?请说明理由;(2)该商场购进这两种型号的彩电共有哪些方案?其中哪种购进方案获得的利润最大?请说明理由.(注:利润=售价-进价)。型号AB进价(元/台)20002400售价(元/台)25003000解:(1)农民购买A彩电的补贴金额是2500×13%=325元,农民购买B彩电的补贴金额是3000×13%=390元,因此购买B彩电获得的补贴多一点.(2)设购进A彩电x台,那么购进B彩电(100-x)台,根据题意可得:2000x+2400(100−x)≥2220002000x+2400(100−x)≤222800解得:43≤x≤45.因此有三种方案:①购进43台A彩电,57台B彩电,②购进44台A彩电,56台B彩电,③购进45台A彩电,55台B彩电.根据图表的信息,我们知道,每台A彩电获利500元,每台B彩电获利600元,因此B购进B彩电最多的方案获利最多,即购进43台A彩电,57台B彩电时获利最多。{3、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?解:(1)设甲种药品的出厂价格为每盒x元,乙种药品的出厂价格为每盒y元.则根据题意列方程组得:解之得:5×3.6-2.2=18-2.2=15.8(元)6×3=18(元)答:降价前甲、乙两种药品每盒的零售价格分别是15.8元和18元(2)设购进甲药品x箱(x为非负整数),购进乙药品(100-x)箱,则根据题意列不等式组得:解之得:则x可取:58,59,60,此时100-x的值分别是:42,41,40有3种方案供选择:第一种方案,甲药品购买58箱,乙药品购买42箱;第二种方案,甲药品购买59箱,乙药品购买41箱;第三种方案,甲药品购买60箱,乙药品购买40箱;8.3362.256.6yxyx36.3yx40100900)100(10%10510%158xxx607157x沼气池修建费用(万元/个)可供使用户数(户/个)占地面积(m2/个)A型32048B型2364、某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.32(20)yxx40x203(20)264486(20)708xxxx≥①≤②解:(1)(2)由题意可得解①得x≥12解②得x≤14∴不等式的解为12≤x≤14又∵是正整数∴x的取值为12,13,14即有3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个(3)∵y=x+40中,k=1>0y随想的增大而增大,要使费用最少,则x=12∴最少费用为y=x+40=52(万元)村民每户集资700元与政府补助共计:700×264+340000=524800>520000∴每户集资700元能满足所需要费用最少的修建方案手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)1200160013005、一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)1200160013005、一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;解:(1)60-x-y;(2)由题意,得900x+1200y+1100(60-x-y)=61000,整理得y=2x-50.手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)1200160013005、一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)(3)①由题意,得P=1200x+1600y+1300(60-x-y)-61000-1500整理得P=500x+500.手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)1200160013005、一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:(3)②求出预估利润的最大值,并写出此时购进三款手机各多少部.②购进C型手机部数为:60-x-y=110-3x.根据题意列不等式组,得:8,2508,11038.xxx解得29≤x≤34.∴x范围为29≤x≤34,且x为整数.(注:不指出x为整数不扣分)∵P是x的一次函数,k=500>0,∴P随x的增大而增大.∴当x取最大值34时,P有最大值,最大值为17500元.此时购进A型手机34部,B型手机18部,C型手机8部.5.解:(1)60-x-y;(2)由题意,得900x+1200y+1100(60-x-y)=61000,整理得y=2x-50.(3)①由题意,得P=1200x+1600y+1300(60-x-y)-61000-1500整理得P=500x+500.②购进C型手机部数为:60-x-y=110-3x.根据题意列不等式组,得:8,2508,11038.xxx解得29≤x≤34.∴x范围为29≤x≤34,且x为整数.(注:不指出x为整数不扣分)∵P是x的一次函数,k=500>0,∴P随x的增大而增大.∴当x取最大值34时,P有最大值,最大值为17500元.此时购进A型手机34部,B型手机18部,C型手机8部.