2019年2.1-第1课时-三角形的有关概念及三边关系精品物理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.1三角形第2章三角形第1课时三角形的有关概念及三边关系情境引入学习目标1.认识三角形并会用几何语言表示三角形,了解三角形分类.2.掌握三角形的三边关系.(难点)3.运用三角形三边关系解决有关的问题.(重点)导入新课埃及金字塔氨气分子结构示意图飞机机翼问题:(1)从古埃及的金字塔到现代的飞机,从宏伟的建筑物到微小的分子结构,都有什么样的形象?(2)在我们的生活中有没有这样的形象呢?试举例.讲授新课三角形的概念一问题1:观察下面三角形的形成过程,说一说什么叫三角形?定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.问题2:三角形中有几条线段?有几个角?ABC有三条线段,三个角边:线段AB,BC,CA是三角形的边.顶点:点A,B,C是三角形的顶点,角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.三角形的概念一问题1:观察下面三角形的形成过程,说一说什么叫三角形?定义:不在同一条直线上的三条线段首尾相接所构成的图形叫作三角形.问题2:三角形中有几条线段?有几个角?ABC边:线段AB,BC,CA是三角形的边.顶点:点A,B,C是三角形的顶点,角:∠A,∠B,∠C叫作三角形的内角,简称三角形的角.有三条线段,三个角讲授新课记法:三角形ABC用符号表示________.边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表示为________.△ABCc,a,bcba顶点C角角角顶点A顶点BBCA在△ABC中,AB边所对的角是:∠A所对的边是:∠CBC再说几个对边与对角的关系试试.三角形的对边与对角:辨一辨:下列图形符合三角形的定义吗?不符合不符合不符合①位置关系:不在同一直线上;②联接方式:首尾顺次相接.三角形应满足以下两个条件:要点提醒表示方法:三角形用符号“△”表示;记作“△ABC”,读作“三角形ABC”,除此△ABC还可记作△BCA,△CAB,△ACB等.基本要素:三角形的边:边AB、BC、CA;三角形的顶点:顶点A、B、C;三角形的内角(简称为三角形的角):∠A、∠B、∠C.特别规定:三角形ABC的三边,一般的顶点A所对的边记作a,顶点B所对的边记作b,顶点C所对的边记作c.5个,它们分别是△ABE,△ABC,△BEC,△BCD,△ECD.找一找:(1)图中有几个三角形?用符号表示出这些三角形?ABCDE(2)以AB为边的三角形有哪些?△ABC、△ABE.(3)以E为顶点的三角形有哪些?△ABE、△BCE、△CDE.(4)以∠D为角的三角形有哪些?△BCD、△DEC.(5)说出△BCD的三个角和三个顶点所对的边.△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.ABCDE三角形的分类二问题1:观察下列三角形,说一说,按照三角形内角的大小,三角形可以分为哪几类?锐角三角形、直角三角形、钝角三角形.腰不等边三角形等腰三角形等边三角形底边顶角底角问题2:你能找出下列三角形各自的特点吗?三边均不相等有两条边相等三条边均相等三条边各不相等的三角形叫做不等边三角形;有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形.思考:等边三角形和等腰三角形之间有什么关系?总结归纳三角形按边分类不等边三角形等腰三角形我们可以把三角形按照三边情况进行分类腰和底不等的等腰三角形等边三角形(三边都相等的三角形)判断:(1)等边三角形是特殊的等腰三角形.()√(2)等腰三角形的腰和底一定不相等.()×(3)等边三角形是等腰三角形.()√在A点的小狗,为了尽快吃到B点的香肠,它选择AB路线,而不选择ACB路线,难道小狗也懂数学?CBA三角形的三边关系三AC+CBAB(两点之间线段最短)ABC路线1:从A到C再到B路线走;路线2:沿线段AB走.请问:路线1、路线2哪条路程较短,你能说出你的根据吗?解:路线2较短.根据“两点之间线段最短”.由此,你能得出什么结论?议一议三角形的任意两边之和大于第三边.ACBCABACABBCABBCACABC还能得出其他的三边关系吗?只要满足较小的两条线段之和大于第三条线段,便可构成三角形;若不满足,则不能构成三角形.总结归纳例1:判断下列长度的三条线段能否拼成三角形?为什么?(1)3cm、8cm、4cm;(2)5cm、6cm、11cm;(3)5cm、6cm、10cm.典例精析判断三条线段是否可以组成三角形,只需说明两条较短线段之和大于第三条线段即可.解:(1)不能,因为3cm+4cm8cm;(2)不能,因为5cm+6cm=11cm;(3)能,因为5cm+6cm10cm.归纳例2一个三角形的三边长分别为4,7,x,那么x的取值范围是()A.3<x<11B.4<x<7C.-3<x<11D.x>3判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.归纳解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.A例3如图,D是△ABC的边AC上一点,AD=BD,试判断AC与BC的大小.解:在△BDC中,有BD+DCBC(三角形的任意两边之和大于第三边).又因为AD=BD,则BD+DC=AD+DC=AC,所以ACBC.例4用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长是4cm的等腰三角形吗?为什么?解:(1)设底边长为xcm,则腰长为2xcm,x+2x+2x=18.解得x=3.6.所以三边长分别为3.6cm、7.2cm、7.2cm.(2)因为长为4cm的边可能是腰,也可能是底边,所以需要分情况讨论.①若底边长为4cm,设腰长为xcm,则有4+2x=18.解得x=7.②若腰长为4cm,设底边长为xcm,则有2×4+x=18.解得x=10.因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4cm的等腰三角形.由以上讨论可知,可以围成底边长是4cm的等腰三角形.当堂练习1.下列长度的三条线段能否组成三角形?为什么?(1)3,4,8()(2)2,5,6()(3)5,6,10()(4)3,5,8()不能能能不能4.如果等腰三角形的一边长是4cm,另一边长是9cm,则这个等腰三角形的周长为______________.3.如果等腰三角形的一边长是5cm,另一边长是8cm,则这个等腰三角形的周长为______________.2.五条线段的长分别为1cm,2cm,3cm,4cm,5cm,以其中三条线为边长可以构成________个三角形.322cm18cm或21cm5.若三角形的两边长分别是2和7,第三边长为奇数,求第三边的长.解:设第三边长为x,根据三角形的三边关系,可得,7-2<x<7+2,即5<x<9,又x为奇数,则第三边的长为7.6.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.拓展提升三角形的有关概念及三边关系三角形的定义:不在同一直线上的三条线段首尾相接所构成的图形.三角形按边分类不等边三角形等腰三角形(包括等边三角形)三角形的三边关系:任意两边之和大于第三边.课堂小结见《名师学案》本课时练习课后作业

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功