1/902017-2018沪科版八年级数学下册教学计划一、学生基本情况:八(3)班学生数为42人,上学期期末考试及格21人。在学生所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,在学习能力上,学生课外主动获取知识的能力较差,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,培养学生课外主动获取知识的能力。二、本学期教学任务:本学期教学内容,共计五章,知识的前后联系分析如下:第十六章二次根式,本章学习二次根式的概念、性质和它的运算,分两节1.二次根式,2.二次根式的运算。二次根式的重点是二次根式的化简与计算,难点是正确理解和运用公式。重难点:重点二次根式,难点:二次根式的运算。第十七章一元二次方程,本章通过实际问题让学生初步体会一元二次方程的概念、并且进一步探究一元二次方程的解法和根的判别式。使学生了解一元二次方程的根与系数的关系,最终掌握一元二次方程的应用。重难点:1.一元二次方程的解法(重难点)2.一元二次方程的根与系数的关系(重点)3.一元二次方程的应用(难点)第十八章勾股定理,直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。重难点:1.勾股定理(重、难点)2.勾股定理的逆定理(重点)第十九章四边形,四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化。重难点:1.平行四边形(重点)2.矩形菱形正方形(重、难点)第二十章数据的初步分析,本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方2/90差估计总体的平均数和方差,进一步体会用样本估计总体的思想。重难点:1.数据的集中趋势(重点)2.数据的离散程度(重、难点)三、主要措施:1、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。2、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。3、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。5、指导成立“课外兴趣小组”,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。四、课时分配第16章二次根式约需10课时第17章一元二次方程约需18课时第18章勾股定理约需8课时第19章四边形约需21课时第20章数据的初步分析约需10课时五、本学期教学进度安排:周次起止时间教学内容作业备注12.26--3.2开学报名16.1二次根式16.1.1二次根式的概念16.1.2二次根式的性质同步练习23.5—3.916.2二次根式的运算16.2.1.二次根式的乘除同步练习33.12—3.1616.2.2.二次根式的加减单元小结评价练习同步练习43.19—3.2317.1一元二次方程同步练习3/9017.2一元二次方程的解法53.26—3.3017.3一元二次方程的根的判别式17.4一元二次方程的根与系数的关系同步练习64.2—4.417.5一元二次方程的应用单元小结评价练习同步练习74.8—4.1318.1勾股定理同步练习84.16—4.2018.2勾股定理的逆定理同步练习94.23—4.28单元小结评价练习期中测试试卷讲解105.2—5.419.1多边形的内角和同步练习115.7—5.1119.2平行四边形同步练习125.14—5.1819.3.1矩形矩形的性质和判定同步练习135.21—5.2519.3.2菱形菱形的性质和判定同步练习145.28—6.119.3.3正方形19.4综合与实践同步练习156.4—6.820.1数据的频数分布同步练习166.11—6.1520.2.1数据的集中趋势同步练习176.19—6.2220.2.2数据的离散程度同步练习186.25—6.29复习迎接期末考试同步练习沪科版数学八年级下册教案第16章二次根式第1课时二次根式的概念4/901.了解二次根式的概念;(重点)2.理解二次根式有意义的条件;(重点)3.理解a(a≥0)是一个非负数,并会应用a(a≥0)的非负性解决实际问题.(难点)一、情境导入1.小明准备了一张正方形的纸剪窗花,他算了一下,这张纸的面积是8平方厘米,那么它的边长是多少?2.已知圆的面积是6π,你能求出该圆的半径吗?大家在七年级已经学习过数的开方,现在让我们一起来解决这些问题吧!二、合作探究探究点一:二次根式的概念【类型一】二次根式的识别(2015·安顺期末)下列各式:①12;②2x;③x2+y2;④-5;⑤35,其中二次根式的个数有()A.1个B.2个C.3个D.4个解析:根据二次根式的概念可直接判断,只有①③满足题意.故选B.方法总结:判断一个式子是否为二次根式,要看式子是否同时具备两个特征:①含有二次根号“”;②被开方数为非负数.两者缺一不可.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次根式有意义的条件代数式x+1x-1有意义,则x的取值范围是()A.x≥-1且x≠1B.x≠1C.x≥1且x≠-1D.x≥-1解析:根据题意可知x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.方法总结:(1)要使二次根式有意义,必须使被开方数为非负数,而不是所含字母为非负数;(2)若式子中含有多个二次根式,则字母的取值必须使各个被开方数同时为非负数;(3)若式子中含有分母,则字母的取值必须使分母不为零.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:利用二次根式的非负性求值【类型一】利用被开方数的非负性求字母的值(1)已知a,b满足2a+8+|b-1|=0,求2a-b的值;(2)已知实数a,b满足a=b-2+2-b+3,求a,b的值.解析:根据二次根式的被开方数是非负数及绝对值的意义求值即可.5/90解:(1)由题意知2a+8=0,b-1=0,得2a=-8,b=1,则2a-b=-9;(2)由题意知b-2≥0,2-b≥0,解得b=2.所以a=0+0+3=3.方法总结:①当几个非负数的和为0时,这几个非负数均为0;②当题目中,同时出现a和-a时(即二次根式下的被开方数互为相反数),则可得a=0.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】与二次根式有关的最值问题当x=________时,3x+2+3的值最小,最小值为________.解析:由二次根式的非负性知3x+2≥0,∴当3x+2=0即x=-23时,3x+2+3的值最小,此时最小值为3.故答案为-23,3.方法总结:对于二次根式a≥0(a≥0),可知其有最小值0.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计本节课的内容是在我们已学过的平方根、算术平方根知识的基础上,进一步引入二次根式的概念.教学过程中,应鼓励学生积极参与,并让学生探究和总结二次根式在实数范围内有意义的条件第2课时二次根式的性质1.理解和掌握(a)2=a(a≥0)和a2=|a|;(重点)2.能正确运用二次根式的性质1和性质2进行化简和计算.(难点)一、情境导入如果正方形的面积是3,那么它的边长是多少?若边长是3,则面积是多少?如果正方形的面积是a,那么它的边长是多少?若边长是a,则面积是多少?你会计算吗?6/90二、合作探究探究点一:利用二次根式的性质进行计算【类型一】利用(a)2=a(a≥0)计算计算:(1)(0.3)2;(2)(-13)2;(3)(23)2;(4)(2x-y)2.解析:(1)可直接运用(a)2=a(a≥0)计算,(2)(3)(4)在二次根号前有一个因数,先利用(ab)2=a2b2,再利用(a)2=a(a≥0)进行计算.解:(1)(0.3)2=0.3;(2)(-13)2=(-1)2×(13)2=13;(3)(23)2=22×(3)2=12;(4)(2x-y)2=22×(x-y)2=4(x-y)=4x-4y.方法总结:形如(nm)2(m≥0)的二次根式的化简,可先利用(ab)2=a2b2,化为n2·(m)2(m≥0)后再化简.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】利用a2=|a|计算计算:(1)22;(2)(-23)2;(3)-(-π)2.解析:利用a2=|a|进行计算.解:(1)22=2;(2)(-23)2=|-23|=23;(3)-(-π)2=-|-π|=-π.方法总结:a2=|a|的实质是求a2的算术平方根,其结果一定是非负数.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型三】利用二次根式的性质化简求值先化简,再求值:a+1+2a+a2,其中a=-2或3.解析:先把二次根式化简,再代入求值,即可解答.解:a+1+2a+a2=a+(a+1)2=a+|a+1|,当a=-2时,原式=-2+|-2+1|=-2+1=-1;当a=3时,原式=3+|3+1|=3+4=7.方法总结:本题考查了二次根式的性质,解决本题的关键是先化简,再求值.变式训练:见《学练优》本课时练习“课堂达标训练”第10题探究点二:利用二次根式的性质进行化简【类型一】与数轴的综合如图所示为a,b在数轴上的位置,化简2a2-(a-b)2+(a+b)2.解析:由a,b在数轴上的位置确定a<0,a-b<0,a+b<0.再根据a2=|a|进行化简.解:由数轴可知-2<a<-1,0<b<1,则a-b<0,a+b<0.原式=2|a|-|a-b|+|a+b|=-2a+a-b-(a+b)=-2a-2b.方法总结:利用a2=|a|化简时,先必须弄清楚被开方数的底数的正负性,计算时应包括两个步骤:①把被开方数的底数移到绝对值符号中;②根据绝对值内代数式的正负性去掉绝对值符号.7/90变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型二】与三角形三边关系的综合已知a、b、c是△ABC的三边长,化简(a+b+c)2-(b+c-a)2+(c-b-a)2.解析:根据三角形的三边关系得出b+c>a,b+a>c,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可.解:∵a、b、c是△ABC的三边长,∴b+c>a,b+a>c,∴原式=|a+b+c|-|b+c-a|+|c-b-a|=a+b+c-(b+c-a)+(b+a-c)=a+b+c-b-c+a+b+a-c=3a+b-c.方法总结:解答本题的关键是根据三角形的三边关系(三角形中任意两边之和大于第三边),得出不等关系,再结合二次根式的性质进行化简.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计二次根式的性质是建立在二次根式概念的基础上,同时又为学习二次根式的运算打下基础.本节教学始终以问题的形式展开,使学生在教师设问和自己释问的过程中萌生自主学习的动机和欲望,逐渐养成思考问题的习惯.性