复数代数形式的加减运算及其几何意义(上课)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

3.2.1复数的代数形式的加减运算及其几何意义复数z=a+bi直角坐标系中的点Z(a,b)xyobaZ(a,b)建立了平面直角坐标系来表示复数的平面x轴------实轴y轴------虚轴(数)(形)------复数平面(简称复平面)一一对应z=a+bi复数的几何意义(一)复数z=a+bi直角坐标系中的点Z(a,b)一一对应平面向量OZ一一对应一一对应复数的几何意义(二)xyobaZ(a,b)z=a+bi练习:课本54页练习(A)在复平面内,对应于实数的点都在实轴上;(B)在复平面内,对应于纯虚数的点都在虚轴上;(C)在复平面内,实轴上的点所对应的复数都是实数;(D)在复平面内,虚轴上的点所对应的复数都是纯虚数。练习:1.下列命题中的假命题是()DC2.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的()。(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)不充分不必要条件结论:实轴上的点都表示实数;虚轴上点除原点外都表示纯虚数。例1已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。表示复数的点所在象限的问题复数的实部与虚部所满足的不等式组的问题转化(几何问题)(代数问题)020622mmmm解:由1223mmm或得)2,1()2,3(m总结:数形结合思想变式一:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,求实数m的值。解:∵复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点是(m2+m-6,m2+m-2),∴(m2+m-6)-2(m2+m-2)+4=0,∴m=1或m=-2。例1已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。变式二:证明对一切m,此复数所对应的点不可能位于第四象限。点位于第四象限,证明:若复数所对应的020622mmmm则3221mmm或即不等式解集为空集,所以复数所对应的点不可能位于第四象限.小结问题:实数有加、减、乘、除、乘方、开方等运算,那么复数是否也能进行这些运算呢?1.复数加减法的运算法则:(1)运算法则:设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减).(2)复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).xoyZ1(a,b)Z2(c,d)Z(a+c,b+d)Z1+Z2=OZ1+OZ2=OZ符合向量加法的平行四边形法则.1.复数加法运算的几何意义?新课讲解xoyZ1(a,b)Z2(c,d)复数z1-z2向量Z2Z1符合向量减法的三角形法则.2.复数减法运算的几何意义?例1.计算)43()2()65(iii解:iiiii11)416()325()43()2()65(12121.(2+3i)+(-3+7i)=2.(3-2i)-(2+i)-()=1+6i3.,,.00.00.00.00abicdiAacbdBacbdCacbdDacbdzzzz练习:已知若是纯虚数,则有()且且且且1212122.2,3(,)56,xiyixyRizzzzzz例且求,(21)(3)___,___xRyxiyyixy变式:已知为纯虚数,且则P58练习P61习题

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功