一、梅涅劳斯定理:如图,DEF是△ABC的一条截线,(AD:DB)×(BF:FC)×(CE:EA)=1GEABFDC证明过程:过C作CG∥BD∴BF:FC=BD:CG,CG:AD=CE:EA∴(BF:FC)×(AD:CG)=(BD:CG)×(EA:CE)所以(AD:DB)×(BF:FC)×(CE:EA)=1二、例题1如图,AE:EB=1:3,BD:DC=2:1,求(EF:CF)+(AF:FD)FABCDE证明过程:①视△BCE为母△,AFD为截线∴(CD:BD)×(EF:FC)×(BA:AE)=1∴CF:FE=8∴EF:CF=1/8②视△ABD为母△,EFC为截线,同理可得AF:FD=1∴(EF:CF)+(AF:FD)=9/8分析:注意应以始点到分点:分点到终点,(截线与母△的交点称为分点)始点终点分点始点分点终点