25.3用频率估计概率教学设计【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。概率与人们的日常生活密切相关,应用十分广泛。纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。2.学会依据问题特点,用频率来估计事件发生的概率。难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。所以,要发动学生积极参与,动手实验,在实践中感悟。【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。【设计理念】激发学生的学习兴趣,发展学生的数学才能,在教学过程中充分运用启发和讨论方式,发扬教学民主,关注知识的形成和发展过程,创设情境,培养学生用数学的眼光看世界的意识,发展搜集和处理信息的能力,运用所学的数学知识解释生活中发生的某些现象,从中建立起数学模型,抽象为数学问题,探究和发展其中的变化规律。【教师准备】《问题导读---评价单》、《问题生成---评价单》、《问题训练---评价单》【教学过程的设计】问题情境师生行为设计意图创设情境,引入新课1、从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张.(1)用列举法列举所有可能出现的结果;(2)求摸出的两张牌的牌面数字之和不小于5的概率.2、袋子中装有蓝、白、红三个球,从中摸出一个再放回去,共摸三次,摸到三个红色球,摸到两个蓝色球、一个红色球,摸到一个蓝色球、一个红色球、一个白色球的概率各是多少?画树形图说明3、在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?探索新知,讲授新课想一想,做一做某林业部门要考查某种幼树在一定条件的移植成活率,应采用什么具体做法?请补出表中的空缺,并完成表后的填空.移植总数(n)成活数(m)成活频率()1080.805047上课之前先检查学生对《问题导读评价单》的完成情况将学生分组,然后由小组长发放《问题生成评价单》,然后小组根据评价单中的问题进行讨论,交流。然后由组长进行汇总,选出小组代表进行发言我们一起来完成这个结论的证明先让学生进行小组合作交流,再进行全班性的问答或交流。教师组织学生讨论,提问学生,师生互动.在此活动中老师应重点关注学生:①能否积极主动地合作交流.教师质疑,引导学生思考。学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:使学生巩固所学知识,并为新课作铺垫。通过提出问题,激发学生的兴趣。通过练习熟练掌握频率的计算。试验次数很大时频率逐渐稳定,所以用频率估计概率。2702350.871400369750662150013350.890350032030.915700063359000807314000126280.902从表可以发现:幼树移植成活的频率在_________左右摆动,并且随着统计数据的增加,这种规律愈加越明显,所以估计幼树移植成活率的概率为________。新知应用,加深理解例1、某水果公司以2元/千克新进了10000千克柑橘,如果公司希望这些柑橘能够获得税前利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?柑橘总质量(n)/千克损坏柑橘质量(m)/千克柑橘损坏的频率()505.500.11010010.500.10515015.1520019.4225024.2530030.9335035.3240039.2445044.5750051.54分析:(1)从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统1、学生在老师的要求下是否能动手计算。2、学生能否自己思考、解答、发言。归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.教师提出问题,学生之间通过充分交流、讨论、探究。教师组织学生分析本问题如何解决,如何分析,如何用样本的概率估计总体的概率通过问题的设置实现将知识向能力的转化。通过问题的设置实现将知识向能力的转化。通过例题的讲解,使学生理解“随机数”的概念,初步掌握用频率估计概率.计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______.(2)根据表中数据填空:完好柑橘的质量为千克,完好柑橘的实际成本为______元/千克,总价为______元/千克,(3)柑橘损坏的概率是______,则完好柑橘的概率是_______,如果某水果公司以2元/千克的成本进了10000千克柑橘,则这批柑橘中完好柑橘的质量是________,若公司希望这些柑橘能够获利5000元,那么售价应定为_______元/千克比较合适.,例2、一个学习小组有6名男生3名女生,老师要从小组的学生中先后随机的抽取3人参加几项测试,并且每名学生都可以被重复抽取,你能设计一种实验来估计:“被抽取的3人中有2名男生1名女生”的概率吗?巩固训练,拓展提高1、某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称的平均每条鱼重2.2千克,第三网捞出35条,称的平均每条鱼重2.8千克,试估计这池塘中鱼的重量。2、王老汉为了与客户签订购销合同,对自己的鱼塘中的鱼的总质量进行估计.第一次捞出100条鱼,称得质量约为184㎏,并将每条鱼都做上记号,在回鱼塘中.当它们混合与鱼群后,又捞出200条,称得质量为416㎏,且有记教师设计填空题引导学生完成大题的解答。学生设计实验,用摸取卡片代替实际抽取学生,这样称模拟实验。学生独立完成,教师巡视过程中注意个别指导。学生动手解题,教师通过投影评讲答案。让两个同学板书帮助学生理解,降低难度。学生自己解决问题,使学生对问题发生兴趣,唤起他们的求知欲,使课堂效果大大提高。综合应用,巩固提高的问题,因此设计该分层推进的补充题,对本节课所学内容分进行检测号的鱼有20条.(1)请你估计一下,鱼塘中的鱼有多少条?★(2)请你计算一下,鱼塘中的鱼的总质量大约是多少㎏?轻松过关发放《问题训练评价单》,让学生独立完成其练习题小结归纳,课堂延伸通过这堂课的学习你有什么收获?知道了哪些新知识?学会了做什么生独立完成问题评价单中的练习题,老师进行讲评,主要培养学生独立解题能力学生畅所欲言,从知识、方法、情感态度等方面谈收获,谈体会,并结合本节教学目标,发现在学习中学会了什么,还存在哪些问题总结、归纳学习内容,培养全面分析问题的良好习惯,并培养学生语言归纳能力.《25.3用频率估计概率教学设计问题导读——评价单》设计者:班级:姓名:【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。2.学会依据问题特点,用频率来估计事件发生的概率。难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。1.一枚质量分布均匀的骰子,抛掷后出现“1”的概率大约为___________.2.掷两个骰子,求投掷出点数之和为7的概率.3.已知|a|=2,|b|=5,求|a+b|的值为7的概率.4.请设计一个摸球游戏,使得摸到红球的概率是21,摸到白球的概率是31.5.下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较好的概率值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的概率均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”“两个反面”“一正一反”的概率相同.A.①②B.②③C.③④D.①③通过预习本节内容你未解决的问题有:自我评价:小组评价:教师评价:《25.3用频率估计概率教学设计问题生成——评价单》请同学们在预习的基础上,将生成的问题充分交流后,在单位时间内完成下列题目,并准备多元化展示.带着问题走进丰富多彩的数学世界1、从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张.(1)用列举法列举可能出现的结果;(2)求摸出的两张牌的牌面数字之和不小于5的概率.2、袋子中装有蓝、白、红三个球,从中摸出一个再放回去,共摸三次,摸到三个红色球,摸到两个蓝色球、一个红色球,摸到一个蓝色球、一个红色球、一个白色球的概率各是多少?画树形图说明3、在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?分析在上述问题中我们可以看出当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率。归纳利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P。注意利用频率估计出的概率是近似值。例1、某水果公司以2元/千克新进了10000千克柑橘,如果公司希望这些柑橘能够获得税前利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?分析:(1)