中考数学因动点产生的面积问题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

中考数学因动点产生的面积问题【类型综述】面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。有时也要根据题目的动点问题产生解的不确定性或多样性。解决这类问题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法.面积的存在性问题常见的题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根.二是先假设关系存在,再列方程,后根据方程的解验证假设是否正确.【方法揭秘】解决动点产生的面积问题,常用到的知识和方法,如下:如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.图1图2图3计算面积长用到的策略还有:如图4,同底等高三角形的面积相等.平行线间的距离处处相等.如图5,同底三角形的面积比等于高的比.如图6,同高三角形的面积比等于底的比.图4图5图6【典例分析】例1如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C(0,2).点M(m,n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上.过点M作x轴的平行线交y轴于点Q,交抛物线于另一点E,直线BM交y轴于点F.(1)求抛物线的解析式,并写出其顶点坐标;(2)当S△MFQ∶S△MEB=1∶3时,求点M的坐标.思路点拨1.设交点式求抛物线的解析式比较简便.2.把△MFQ和△MEB的底边分别看作MQ和ME,分别求两个三角形高的比,底边的比(用含m的式子表示),于是得到关于m的方程.3.方程有两个解,慎重取舍.解压轴题时,时常有这种“一石二鸟”的现象,列一个方程,得到两个符合条件的解.满分解答(1)因为抛物线与x轴交于A(-1,0),B(4,0)两点,设y=a(x+1)(x-4).代入点C(0,2),得2=-4a.解得12a.所以221131325(1)(4)2()222228yxxxxx.顶点坐标为325()28,.考点伸展第(2)题S△MFQ∶S△MEB=1∶3,何需点M一定要在抛物线上?从上面的解题过程可以看到,△MFQ与△MEB的高的比=4FQmMNm与n无关,两条底边的比=32MQmMEm也与n无关.如图3,因此只要点E与点M关于直线x=32对称,点M在直线的左侧,且点M不在坐标轴上,就存在S△MFQ∶S△MEB=1∶3,点M的横坐标为1(如图3)或-12(如图4).图3图4例2如图,已知抛物线212yxbxc(b、c是常数,且c<0)与x轴交于A、B两点(点A在点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).(1)b=______,点B的横坐标为_______(上述结果均用含c的代数式表示);(2)连结BC,过点A作直线AE//BC,与抛物线交于点E.点D是x轴上一点,坐标为(2,0),当C、D、E三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连结PB、PC.设△PBC的面积为S.①求S的取值范围;②若△PBC的面积S为正整数,则这样的△PBC共有_____个.思路点拨1.用c表示b以后,把抛物线的一般式改写为两点式,会发现OB=2OC.2.当C、D、E三点共线时,△EHA∽△COB,△EHD∽△COD.3.求△PBC面积的取值范围,要分两种情况计算,P在BC上方或下方.4.求得了S的取值范围,然后罗列P从A经过C运动到B的过程中,面积的正整数值,再数一数个数.注意排除点A、C、B三个时刻的值.满分解答(3)①当P在BC下方时,过点P作x轴的垂线交BC于F.直线BC的解析式为122yx.考点伸展点P沿抛物线从A经过C到达B的过程中,△PBC的面积为整数,依次为(5),4,3,2,1,(0),1,2,3,4,3,2,1,(0).当P在BC下方,S=4时,点P在BC的中点的正下方,F是BC的中点.学科#网例3如图,在平面直角坐标系中,直线112yx与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;[②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.思路点拨1.第(1)题由于CP//y轴,把∠ACP转化为它的同位角.2.第(2)题中,PD=PCsin∠ACP,第(1)题已经做好了铺垫.3.△PCD与△PCB是同底边PC的两个三角形,面积比等于对应高DN与BM的比.4.两个三角形的面积比为9∶10,要分两种情况讨论.满分解答(1)设直线112yx与y轴交于点E,那么A(-2,0),B(4,3),E(0,1).在Rt△AEO中,OA=2,OE=1,所以5AE.所以25sin5AEO.因为PC//EO,所以∠ACP=∠AEO.因此25sin5ACP.将A(-2,0)、B(4,3)分别代入y=ax2+bx-3,得4230,16433.abab解得12a,12b.考点伸展第(3)题的思路是:△PCD与△PCB是同底边PC的两个三角形,面积比等于对应高DN与BM的比.而252511coscos(4)(2)(4)5525DNPDPDNPDACPmmmm,BM=4-m.①当S△PCD∶S△PCB=9∶10时,19(2)(4)(4)510mmm.解得52m.②当S△PCD∶S△PCB=10∶9时,110(2)(4)(4)59mmm.解得329m.例4如图,已知二次函数的图象过点O(0,0)、A(4,0)、B(432,3),M是OA的中点.(1)求此二次函数的解析式;(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求点P的坐标;(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连结CM,CM与翻折后的曲线OB′A交于点D,若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出点C的坐标;若不存在,请说明理由.思路点拨1.设交点式或顶点式求抛物线的解析式都比较简便.2.先确定四边形PQAM是平行四边形,再验证它是菱形.3.把△CDA与△MDA的面积比,转化为△MCA与△MDA的面积比,进而转化为点C与点D的纵坐标的比.满分解答(3)如图3,作CE⊥x轴于E,作DF⊥x轴于F.我们把面积进行两次转换:如果△CDA的面积是△MDA面积的2倍,那么△MCA的面积是△MDA面积的3倍.而△MCA与△MDA是同底三角形,所以高的比CE∶DF=3∶1,即yC∶yD=3∶1.因此ME∶MF=3∶1.设MF=m,那么ME=3m.原抛物线的解析式为3(4)3yxx,所以翻折后的抛物线的解析式为3(4)3yxx.所以D3(2,(2)(24))3mmm,C3(23,(23)(234))3mmm.根据yC∶yD=3∶1,列方程33(23)(234)3(2)(24)33mmmm.整理,得3m2=4.解得233m.所以23223m.所以点C的坐标为83(223,)3(如图3),或83(223,)3(如图4).图2图3图4考点伸展第(1)题可以设抛物线的顶点式:由点O(0,0),A(4,0),B(432,3)的坐标,可知点B是抛物线的顶点.可设243(2)3yax,代入点O(0,0),得33a.例5如图,直线l经过点A(1,0),且与双曲线myx(x>0)交于点B(2,1).过点(,1)Ppp(p>1)作x轴的平行线分别交曲线myx(x>0)和myx(x<0)于M、N两点.(1)求m的值及直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.思路点拨1.第(2)题准确画图,点的位置关系尽在图形中.2.第(3)题把S△AMN=4S△AMP转化为MN=4MP,按照点M与线段NP的位置关系分两种情况讨论.满分解答由P(3,2)、N(-1,2)、A(1,0)三点的位置关系,可知△PNA为等腰直角三角形.所以△PMB∽△PNA.图2图3图4考点伸展在本题情景下,△AMN能否成为直角三角形?情形一,如图5,∠AMN=90°,此时点M的坐标为(1,2),点P的坐标为(3,2).情形二,如图6,∠MAN=90°,此时斜边MN上的中线等于斜边的一半.不存在∠ANM=90°的情况.图5图6例6如图1,在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.图1备用图思路点拨1.第(1)题求得的AD的长,就是第(2)题分类讨论x的临界点.2.第(2)题要按照点F的位置分两种情况讨论.学科#网3.第(3)题的一般策略是:先假定平分周长,再列关于面积的方程,根据方程的解的情况作出判断.满分解答图2图3图4(3)△ABC的周长等于12,面积等于6.先假设EF平分△ABC的周长,那么AE=x,AF=6-x,x的变化范围为3<x≤5.因此1142sin(6)(6)2255AEFSAEAFAxxxx.解方程2(6)35xx,得1362x.因为1362x在3≤x≤5范围内(如图4),因此存在直线EF将△ABC的周长和面积同时平分.考点伸展如果把第(3)题的条件“点F在直角边AC上”改为“点F在直角边BC上”,那么就不存在直线EF将△ABC的周长和面积同时平分.先假设EF平分△ABC的周长,那么AE=x,BE=5-x,BF=x+1.因此21133sin(5)(1)(45)22510BEFSBEBFBxxxx.解方程23(45)310xx.整理,得2450xx.此方程无实数根.【变式训练】1.(2017山东滨州第12题)在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=1x相交于点A、B,且AC+BC=4,则△OAB的面积为()A.23+3或23-3B.2+1或2-1C.23-3D.2-1【答案】A.2.(2017江苏苏州第10题)如图,在菱形CD中,60,D8,F是的中点.过点F作FD,垂足为.将F沿点到点的方向平移,得到F.设、分别是F、F的中点,当点与点重合时,四边形CD的面积为A.283B.243C.323D.3238【答案】A.7382832SLKH故答案选A.考点:平行四边形的面积,三角函数.3.(2017青海西宁第10题)如图,在

1 / 29
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功