(2)相似三角形有什么性质?对应角相等,对应边成比例;(3)相似三角形的对应边的比叫什么?相似比(4)ΔABC与ΔA/B/C/的相似比为k,则ΔA/B/C/与ΔABC的相似比是多少?1k(1)相似三角形有哪些判定方法?定义,定理,(SSS),(SAS),(AA),(HL)温故知新如果两个三角形相似,它们的周长之间有什么关系?两个相似多边形呢?ABCA/B/C/相似三角形周长的比等于相似比。相似多边形周长的比等于相似比。kACCACBBCBAAB````````````ACkCACBkBCBAkABkACCBBAAkCCkBBkAACCBBACABAABllCBAABC`````````````````````探一探三角形中,除了角和边外,还有三种主要线段:高线,角平分线,中线高线角平分线中线想一想相似三角形的相似比与对应边上高线比有什么关系?例如:ΔABC∽ΔA/B/C/,ADBC于D,A/D/B/C/于D/,求证:''''ADABkADABABCDA/B/C/D/①相似三角形的对应高线之比等于相似比。思考ADA′D′ABA′B′∴______==K证明:∵△ABC∽△A′B′C′∴∠B=∠B′又∵AD、A′D′是高线∴∠ADB=∠A′D′B′=90°∴△ABD∽△A′B′D′角平分线角平分线中线中线②相似三角形的对应角平分线之比,中线之比,都等于相似比。(1)如图ΔABC∽ΔA/B/C/,相似比为k,它们的面积比是多少?kDAADACCACBBCBAAB````````2```````2121kkkDACBADBCSSCBAABC①相似三角形面积的比等于相似比的平方.ABCDA/B/C/D/探一探(2)如图,四边ABCD相似于四边形A/B/C/D/,相似比为k,它们的面积比是多少?ABCDA/B/C/D/②相似多边形面积的比等于相似比的平方.(1)相似三角形对应的比等于相似比.相似三角形(多边形)的性质:(3)相似面积的比等于相似比的平方.多边形多边形(2)相似周长的比等于相似比.三角形三角形高线角平分线中线知识归纳(1)已知ΔABC与ΔA/B/C/的相似比为2:3,则周长比为,对应边上中线之比,面积之比为。(2)已知ΔABC∽ΔA/B/C/,且面积之比为9:4,则周长之比为,相似比,对应边上的高线之比。2:34:93:23:23:22:3练一练例1、如图在ΔABC和ΔDEF中,AB=2DE,AC=2DF,∠A=∠D,ΔABC的周长是24,面积是,求ΔDEF的周长和面积。ABCDEF512解:在△ABC和△DEF中,∵AB=2DE,AC=2DF,∴21ACDFABDE又∠D=∠A,∴△DEF∽△ABC,相似比为21∴△DEF的周长为21×24=12面积为53512()212例题讲解EABCD例2、如图,在△ABC中,D是AB的中点,DE∥BC则:(1)S△ADE:S△ABC=(2)S△ADE:S梯形DBCE=1:41:3(1)相似三角形对应的比等于相似比.(3)相似面积的比等于相似比的平方.多边形多边形(2)相似周长的比等于相似比.三角形三角形高线角平分线中线议一议:本节课你学到了什么?如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?NMQPEDCBA解:设正方形PQMN是符合要求的△ABC的高AD与PN相交于点E。设正方形PQMN的边长为x毫米。∵PN∥BC∴△APN∽△ABC∴AEAD=PNBC因此,得x=48(毫米)。答:----。80–x80=x120