第一章自动控制系统概述1、组成自动控制系统的基本元件或装置有哪些?各环节的作用?控制系统是由控制对象和控制装置组成,控制装置包括:(1)给定环节给出与期望的输出相对应的系统输入量。(2)测量变送环节用来检测被控量的实际值,测量变送环节一般也称为反馈环节。(3)比较环节其作用是把测量元件检测到的实际输出值与给定环节给出的输入值进行比较,求出它们之间的偏差。(4)放大变换环节将比较微弱的偏差信号加以放大,以足够的功率来推动执行机构或被控对象。(5)执行环节直接推动被控对象,使其被控量发生变化。常见的执行元件有阀门,伺服电动机等。2、什么是被控对象、被控量、控制量、给定量、干扰量?举例说明。被控对象指需要给以控制的机器、设备或生产过程。被控量指被控对象中要求保持给定值、要按给定规律变化的物理量,被控量又称输出量、输出信号。控制量也称操纵量,是一种由控制器改变的量值或状态,它将影响被控量的值。给定值是作用于自动控制系统的输入端并作为控制依据的物理量。给定值又称输入信号、输入指令、参考输入。除给定值之外,凡能引起被控量变化的因素,都是干扰,干扰又称扰动。比如一个水箱液位控制系统,其控制对象为水箱,被控量为水箱的水位,给定量是水箱的期望水位。3、自动控制系统的控制方式有哪些?自动控制系统的控制方式有开环控制、闭环控制与复合控制。4、什么是闭环控制、复合控制?与开环控制有什么不同?若系统的输出量不返送到系统的输入端(只有输入到输出的前向通道),则称这类系统为开环控制系统。在控制系统中,控制装置对被控对象所施加的控制作用,若能取自被控量的反馈信息(有输出到输入的反馈通道),即根据实际输出来修正控制作用,实现对被控对象进行控制的任务,这种控制原理被称为反馈控制原理。复合控制是闭环控制和开环控制相结合的一种方式,既有前馈通道,又有反馈通道。5、自动控制系统的分类(按元件特性分、按输入信号的变化规律、按系统传输信号的性质)?按系统输入信号的时间特性进行分类,可分为恒值控制系统和随动系统。控制系统按其结构可分为开环控制、闭环控制与复合控制等。按元件特性分为线性系统和非线性系统。按系统传输信号的性质来分连续系统离散系统。6、什么是恒值控制系统?什么是随动控制系统(伺服控制系统)?恒值控制系统的输入信号是一个恒定的数值。随动控制系统参考输入量是预先未知的随时间任意变化的函数。7、什么是连续系统?什么是线性系统?系统各部分的信号都是模拟信号的系统叫连续函数。组成系统的元件的特性均为线性的系统叫线性系统。8、对控制系统的要求可以概括为哪几个字?如何理解?对控制系统的要求可以概括为稳、快、准。稳是指稳定性,稳定是自动控制系统最基本的要求,不稳定的控制系统是不能工作的。快是指快速性,在系统稳定的前提下,希望控制过程(过渡过程)进行得越快越好。准是指准确性,即要求动态误差(偏差)和稳态误差(偏差)都越小越好。第二章控制系统的数学模型1、什么是数学模型?什么是动态数学模型?什么是静态数学模型?你熟悉的动态数学模型有哪些?建立数学模型的方法有哪些?描述系统各变量之间关系的数学表达式,叫做系统的数学模型。数学模型分为动态模型和静态模型。描述系统动态过程的方程式,如微分方程、差分方程等,称为动态模型;在静态条件下(即变量的各阶导数为零),描述系统各变量之间关系的方程式,称为静态模型。动态数学模型有多种形式,时域中常用的数学模型有微分方程、差分方程;复域中有传递函数、结构图;频域中有频率特性等。建立控制系统的数学模型,有两种基本方法:分析法和实验法2、传递函数与微分方程的关系?传递函数是否适用于非线性系统?与初始条件、输入信号是否有关?微分方程是连续系统的时域数学模型,是描述系统变量之间关系的动态方程。传递函数是在零初始条件下,线性定常系统输出量的拉氏变换与输入量的拉氏变换之比。传递函数与微分方程有直接联系,可经过简单变换互相转化;传递函数只适应于描述线性定常系统。传递函数只取决于系统的结构参数,与外作用及初始条件无关。3、什么是系统的相似性?不同的物理系统是否可能具有相同的物理模型?实际中存在的许多工程控制系统,不管它们是机械的、电动的、气动的、液动的、生物学的、经济学的等等,它们的数学模型可能是相同的,这就是系统的相似性。也就是说,不同的物理系统可能具有相同的物理模型。4、什么是系统的结构图?简述结构图的组成。同一系统的结构图是否唯一?什么是信号流图?与结构图是否可以相互转化?系统的结构图是描述系统各组成元部件之间信号传递关系的数学图形,由信号线、方框、相加点、引出点组成。同一系统的结构图不唯一。信号流图也是一种用图形表示的数学模型,与结构图可以互相转化。5、什么是零极点分布图?如何绘制?系统所有的零、极点在s平面的分布图,即为零极点分布图。零、极点可以是实数、复数(为复数则共扼成对出现),在复平面上画出系统所有零点和极点,即得到零极点分布图。6、已知物理系统的原理图如图2-3,以输入为ur(t)输出为uc(t)写出系统的微分方程和传递函数。7、利用结构图等效变换或梅逊公式简化图2-4所示系统的结构图,求系统的闭环传递函数。第三章时域分析法1、在经典控制理论中,分析系统性能的方法有哪些?在经典控制理论中,分析系统性能主要有三种方法:时域分析法、根轨迹法和频域分析法。2、什么是时域分析法?时域分析法的特点是什么?时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,可以提供系统时间响应的全部信息。3、在选取试验信号时应遵循哪些原则?控制系统的典型输入信号有哪些?分别可以描述什么情况?在选取试验信号时应遵循以下原则:选取的输入信号应能反映实际系统工作的实际情况;形式简单,易于获得,便于实验研究、数学处理与理论计算;选取能对系统进行严格检验的信号,即,使系统工作在最不利的条件下。控制系统中采用的典型信号有脉冲信号、阶跃信号、斜坡信号、加速度信号、正弦信号。脉冲信号是工程上的脉动信号(窄脉冲)在理论上抽象的结果。阶跃函数是在实际控制系统中经常遇到的一种典型输入信号形式。斜坡信号表征匀速信号,以恒定速率变化的输入可视为斜坡信号。加速度信号表征匀加速信号。正弦信号是控制系统常用的一种典型输入信号,如海浪的影响可用正弦信号来表征。更重要的是,控制系统在不同频率正弦信号作用下的响应特性,是工程上常用的频率响应法的重要依据。4、什么是阶跃响应、斜坡响应、加速度响应?阶跃信号作用下系统的响应叫阶跃响应。斜坡信号作用下系统的响应叫斜坡响应。加速度信号作用下系统的响应叫加速度响应。5、通常,控制系统的性能指标是通过什么函数的响应特性的特征量来定义?为什么?通常,控制系统的性能指标,是通过系统对单位阶跃函数响应特性的特征量来定义的。因为一般认为,阶跃输入对系统来说是最严峻的工作状态。如果系统在阶跃信号作用下动态性能满足要求,那么系统在其它形式的输入信号作用下,动态性能也令人满意。6、系统的时间响应过程,由哪两部分组成?系统性能指标分为哪两种?系统的时间响应过程,由动态过程和稳态过程两部分组成。相应地,系统性能分为动态性能和稳态性能,分别由动态性能指标和稳态性能指标来描述。7、什么是动态过程?什么是稳态过程?动态过程,也称过渡过程或瞬态过程,指系统在输入信号作用下,其输出量从初始状态到最终状态的过程。稳态过程,指系统在输入信号作用下,其输出量在时间t趋于无穷大时的表现形式。稳态过程提供系统的稳态误差信息,反映系统的稳态性能。8、动态过程随系统结构或参数的变化而呈现哪几种不同的形式?动态过程随系统结构或参数的变化而呈现衰减、发散和等幅振荡等几种形态。9、什么是衰减振荡、等幅振荡、发散振荡?动态过程是一个振荡过程,但是振荡的过程不断地衰减,到过渡过程结束时,被控量会达到新的稳态值,这种过程叫衰减振荡过程。动态过程是一个持续等幅振荡过程,始终不能达到新的稳态值,这种过程叫等幅振荡过程。动态过程不但是一个振荡过程,而且振荡的幅值越来越大,以致会大大超过被控量允许的误差范围,这种过程叫发散振荡过程。10、阶跃响应性能指标有哪些?分别如何定义?稳态性能指标由什么指标来描述?通常在什么函数作用下测定?11、系统极点和零点对系统的响应形式有什么影响?12、典型一阶系统阶跃响应与参数的关系,初始斜率?13、典型一阶系统的跟踪性能如何?典型一阶系统可无误差地跟踪阶跃信号和脉冲信号,但跟踪斜坡信号时存在常值误差T。不能跟踪加速度函数。14、典型二阶系统阶跃响应形式与阻尼比的关系?如何判断二阶系统的阻尼状态?典型二阶系统阶跃响应的初始斜率是多少?15、表征响应平稳性的性能指标是哪个?典型二阶系统响应的平稳性取决于哪个参数?16、什么是最佳阻尼比?17、典型二阶系统的PD控制与速度反馈控制的作用?18、什么是高阶系统?高阶系统的响应组成?主导极点的定义?偶极子的定义?若描述系统的动态方程为三阶或三阶以上微分方程,系统称为高阶系统。高阶系统的时域响应由简单函数项组成。如果在系统所有的闭环极点中,距离虚轴最近的极点附近没有闭环零点,而其它闭环极点又远离虚轴。那么,距虚轴最近的闭环极点对应的响应分量,随时间推移衰减缓慢,它们在系统的时间响应过程中起主导作用,这样的闭环极点称为闭环主导极点。偶极子是指一对靠得很近的零点、极点。它们对系统性能的影响相互抵消,在近似分析中通常可忽略它们的影响。19、系统稳定的充分必要条件是什么?判别系统稳定性的基本方法有哪些?系统所有特征根(极点)位于左半平面(具有负实部)。判别系统稳定性的基本方法有劳斯—赫尔维茨判据、根轨迹法、奈奎斯特判据、李雅普诺夫第二方法。20、系统型别与系统的跟踪性能之间有什么关系?什么是无差系统?什么是有差系统?系统型别越高,跟踪性能越好。有积分环节时,静态误差为0,称为无差系统,没有积分环节的系统称为有差系统。21、影响稳态误差的因素有哪些?如何减小稳态误差?影响稳态误差的因素有系统型别、系统的开环增益、输入信号的形式。增加系统型别,可以提高系统无差跟踪输入信号的阶次;增大系统的开环增益,可以减小系统跟踪一定形式输入信号的误差。22、已知系统结构图如图3-1所示,分别求b=0和b=0.05时系统单位阶跃响应性能指标:22、解b=0时,闭环传递函数为第四章根轨迹法1、什么是根轨迹?零度根轨迹?参数根轨迹?2、什么是根轨迹方程?分为哪两部分?3、根轨迹的分支数?对称性如何?起点?终点?实轴上的根轨迹?4、什么是根轨迹的渐近线?趋于无穷远处的根轨迹与某条直线的距离趋于零,该直线叫做根轨迹的渐近线。5、如何由根轨迹分析系统稳定性、稳态性能和动态性能?系统的根轨迹曲线反映了系统特性的有关信息,有了根轨迹图,就可以分析控制系统的各种性能。若系统的根轨迹曲线分布在s的左半平面内,故该闭环系统总是稳定的。由根轨迹图可确定闭环极点的具体位置,因此可确定系统的动态性能。根轨迹上某一点反映了系统的开环增益,结合系统型别,可判断系统的稳态性能。第五章频域分析法1、什么是频域分析法?频域分析法是研究线性系统的一种工程方法。它以控制系统的频率特性作为数学模型,通过绘制简单的图表研究、分析控制系统的动态性能与稳态性能。2、什么是频率响应?系统在正弦信号作用下的稳态响应叫做频率响应。3、什么是频率特性?分为哪两个部分?可以由什么几何方式描述?输入一正弦电压信号,稳态输出仍然是正弦电压,其频率和输入电压频率相同,输出幅值与输入信号的幅值比随频率的变化叫做幅频特性,输出相位与输入的相位差叫做相频特性,二者统称频率特性。频率特性可由幅相频率特性曲线和对数频率特性曲线描述,对数频率特性曲线又称伯德(Bode)图。4、Bode图采用对数分度的优点?(1)由于横坐标采用对数刻度,将低频段相对展宽了(低频段频率特性的形状对于控制系统性能的研究有重要意义),而将高频段相对压缩了。因此,可以在较宽的频段范围内研究系统的频率特性。(2)由于对数运算可将乘除运算变成加减运算,当绘制由多个环节串联而成的系统的对数幅频特性曲线时,只要将各个环节的对数幅频特性曲线的纵坐标相加、减即可,从而简化