回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五第2课时椭圆、双曲线、抛物线回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五高频考点考情解读圆锥曲线的定义与标准方程高考对圆锥曲线的定义及标准方程的考查方式有两种:一是在解答题中作为试题的入口进行考查;二是在选择题和填空题中结合圆锥曲线的简单几何性质进行考查.圆锥曲线的几何性质圆锥曲线的简单几何性质是圆锥曲线的重点内容.高考主要考查椭圆与双曲线的离心率的求解、双曲线的渐近线方程的求解.直线与圆锥曲线的位置关系直线与圆锥曲线相交主要考查直线与椭圆相交、直线与抛物线相交,多以解答题的形式考查弦长公式,试题难度中等偏上回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(2a<|F1F2|)|PF|=|PM|点F不在直线l上,PM⊥l于M标准方程x2a2+y2b2=1(a>b>0)x2a2-y2b2=1(a>0,b>0)y2=2px(p>0)图象回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五范围|x|≤a,|y|≤b|x|≥ax≥0顶点(±a,0),(0,±b)(±a,0)(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0)p2,0轴长轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e=ca=1-b2a2(0<e<1)e=ca=1+b2a2(e>1)e=1通径|AB|=2b2a|AB|=2p几何性质渐近线y=±bax回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五(1)(2011·辽宁卷)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()A.34B.1C.54D.74回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五(2)(2012·山东卷)已知椭圆C:x2a2+y2b2=1(ab0)的离心率为32.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为()A.x28+y22=1B.x212+y26=1C.x216+y24=1D.x220+y25=1回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五解析:(1)根据抛物线定义与梯形中位线定理,得线段AB中点到y轴的距离为:12(|AF|+|BF|)-14=32-14=54.(2)∵椭圆的离心率为32,∴ca=a2-b2a=32,∴a=2b.∴椭圆方程为x2+4y2=4b2.∵双曲线x2-y2=1的渐近线方程为x±y=0.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五答案:(1)C(2)D∴渐近线x±y=0与椭圆x2+4y2=4b2在第一象限的交点为255b,255b,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b×255b=4,∴b2=5,∴a2=4b2=20.∴椭圆C的方程为x220+y25=1.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五(1)圆锥曲线的定义重视定义在解题中的应用,灵活地进行抛物线上的点到焦点距离与到准线距离相等的转化;椭圆和双曲线的定义中的定值是求标准方程的基础,在已知圆锥曲线上一点及焦点,首先要考虑使用圆锥曲线的定义求解.(2)求解圆锥曲线的标准方程的方法是“先定型,后计算”.所谓“定型”,就是指确定类型,所谓“计算”,就是指利用待定系数法求出方程中的a2、b2、p的值,最后代入写出椭圆、双曲线、抛物线的标准方程.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五1.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为22.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五解析:设椭圆方程为x2a2+y2b2=1(a>b>0),由e=22知ca=22,故b2a2=12.由于△ABF2的周长为|AB|+|BF2|+|AF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=16,故a=4.∴b2=8.∴椭圆C的方程为x216+y28=1.答案:x216+y28=1回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五(1)(2012·新课标全国卷)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=43,则C的实轴长为()A.2B.22C.4D.8回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五(2)(2011·福建卷)设圆锥曲线C的两个焦点分别为F1,F2,若曲线C上存在点P满足|PF1|∶|F1F2|∶|PF2|=4∶3∶2,则曲线C的离心率等于()A.12或32B.23或2C.12或2D.23或32回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五解析:(1)设C:x2a2-y2a2=1.∵抛物线y2=16x的准线为x=-4,联立x2a2-y2a2=1和x=-4得A(-4,16-a2),B(-4,-16-a2),∴|AB|=216-a2=43,∴a=2,∴2a=4.∴C的实轴长为4.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五答案:(1)C(2)A(2)当曲线为椭圆时,e=|F1F2||PF1|+|PF2|=34+2=12;当曲线为双曲线时,e=|F1F2||PF1|-|PF2|=34-2=32.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五(1)圆锥曲线的离心率椭圆和双曲线的离心率是反映椭圆的扁平程度和双曲线开口大小的一个量,其取值范围分别是0<e<1和e>1.在求解有关离心率的问题时,一般并不是直接求出c和a的值,而是根据题目给出的椭圆或双曲线的几何特征,建立关于参数c、a、b的方程或不等式,通过解方程或不等式求得离心率的值或范围.(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线.这里强调p的几何意义是焦点到准线的距离.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五2.已知双曲线x2a2-y2b2=1(a0,b0)的左顶点与抛物线y2=2px(p0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为()A.23B.25C.43D.45回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五解析:由y=baxx=-p2解得y=-bp2ax=-p2,由题知-bp2a=-1-p2=-2得ba=12p=4,回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五答案:B又知p2+a=4,故a=2,b=1,c=a2+b2=5.∴焦距2c=25.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五(2012·北京卷)已知椭圆C:x2a2+y2b2=1(ab0)的一个顶点为A(2,0),离心率为22.直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程.(2)当△AMN的面积为103时,求k的值.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五解析:(1)由题意得a=2,ca=22,a2=b2+c2,解得b=2.所以椭圆C的方程为x24+y22=1.(2)由y=kx-1,x24+y22=1得(1+2k2)x2-4k2x+2k2-4=0.设点M,N的坐标分别为(x1,y1),(x2,y2),则回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五y1=k(x1-1),y2=k(x2-1),x1+x2=4k21+2k2,x1x2=2k2-41+2k2所以|MN|=x2-x12+y2-y12=1+k2[x1+x22-4x1x2]=21+k24+6k21+2k2.又因为点A(2,0)到直线y=k(x-1)的距离d=|k|1+k2,所以△AMN的面积为S=12|MN|·d=|k|4+6k21+2k2.由|k|4+6k21+2k2=103,解得k=±1.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五直线与圆锥曲线的位置关系主要由联立方程后方程的解进行判断,一般不需要直接求出方程的解,二次方程的判别式及根与系数的关系是解决这类问题最好的方法,因此,这种题目充分体现了函数与方程思想的灵活应用.而对于直线与双曲线或抛物线的位置关系的判断,联立方程后首先要看二次项系数是否为0.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五3.(2012·安徽名校模拟)已知椭圆C1:x24+y2b2=1(0b2)的离心率为32,拋物线C2:x2=2py(p0)的焦点是椭圆的顶点.(1)求拋物线C2的方程.(2)过点M(-1,0)的直线l与拋物线C2交于E,F两点,过E,F作拋物线C2的切线l1,l2,当l1⊥l2时,求直线l的方程.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五解析:(1)∵椭圆C1的长半轴长a=2,半焦距c=4-b2,由e=ca=4-b22=32得b2=1,∴椭圆C1的上顶点为(0,1),∴拋物线C2的焦点为(0,1),∴拋物线C2的方程为x2=4y.(2)由已知可得直线l的斜率必存在,设直线l的方程为y=k(x+1),E(x1,y1),F(x2,y2).由x2=4y得y=14x2,回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五∴y′=12x.∴切线l1,l2的斜率分别为12x1,12x2.当l1⊥l2时,12x1·12x2=-1,即x1x2=-4.由y=kx+1x2=4y得x2-4kx-4k=0,∴Δ=(-4k)2-4×(-4k)0,解得k-1或k0.①由x1x2=-4k=-4,得k=1,满足①式,∴直线l的方程为x-y+1=0.回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五方程思想—求解圆锥曲线的离心率(2012·泰安调研)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.2B.3C.3+12D.5+12回扣主干知识聚焦高频考点品味经典考题演练课时作业工具栏目导引二轮新课标文科数学第一部分专题五解析:设双曲线方程为x2a2-y2b2=1(a,b0),不妨设一个焦点为F(c,0)(c>0),一个虚轴端点为B(0,b),则kFB=-bc.又渐近线的斜率为±ba,所以由直线垂直关系得-bc·ba=-1(-ba显然不符合),即b2=ac,又c2-a2=b2,故c2-a2=ac,两边同除以a2,得方程