Spatially correlated allocation models for count d

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

SpatiallycorrelatedallocationmodelsforcountdataPeterJ.GreenUniversityofBristol,UK.SylviaRichardsonyImperialCollege,London.9August2000AbstractSpatialheterogeneityofcountdataonararephenomenonoccurscommonlyinmanydomainsofapplication,inparticularlyindiseasemapping.Wepresentnewmethodologytoanalysesuchdata,basedonahierarchicalallocationmodel.WeassumethatthecountsfollowaPoissonmodelatthelowestlevelofthehierarchy,andintroduceanitemixturemodelforthePoissonratesatthenextlevel.Thenoveltyliesintheallocationmodeltothemixturecomponents,whichfollowsaspatiallycorrelatedprocess,thePottsmodel,andintreatingthenumberofcomponentsofthespatialmixtureasunknown.InferenceisperformedinaBayesianframeworkusingreversiblejumpMCMC.ThemodelintroducedcanbeviewedasaBayesiansemiparametricapproachtospecifyingexiblespatialdistributioninhierarchicalmodels.Itcouldalsobeusedincontextswherethespatialmixturesubgroupsarethemselvesofinterest,asinhealthcaremonitoring.Performanceofthemodelandcomparisonwithanalternativewell-knownMarkovrandomeldmodelspecicationforthePoissonratesaredemonstratedonsyntheticdatasets.Wefoundthatourallocationmodelavoidstheproblemofoversmoothingincaseswheretheunderlyingratesexhibitdiscontinuities,whilegivingequallygoodresultsincasesofsmoothgradient-likeorhighlyautocorrelatedrates.ThemethodologyisillustratedonepidemiologicalapplicationstodataonrarediseaseandhealthoutcomeinFrance.Somekeywords:Allocation,Bayesianhierarchicalmodel,Diseasemapping,Finitemixturedis-tributions,Heterogeneity,MarkovchainMonteCarlo,Poissonmixtures,Pottsmodel,Reversiblejumpalgorithms,Semiparametricmodel,Split/mergemoves.1IntroductionWeconsiderthemodellingofspatialheterogeneityforcountdataonararephenomenon,observedinapre-denedsetofareas.Thisisageneralset-upwhicharisesinmanydomainsofapplication,forexampleinecologyoragriculturalscience.Themotivatingsituationthatwehaveinmindthroughout,thatofobserveddiseasecountswithfewobservedeventsineacharea,belongstothedomainofepidemiology.Therearemanyreasonsforsuspectingheterogeneityintheunderlyingeventrateandwantingtocharacteriseit.Indiseasemapping,forexample,itishardlyplausiblethatalltherelevantfactorsactingontheunderlyingdiseaseriskcanbeidentiedormeasuredatthearealevel.Thusthereremainsresidualheterogeneity,whichislikelytohaveaspatialstructureDepartmentofMathematics,UniversityofBristol,BristolBS81TW,UK.Email:P.J.Green@bristol.ac.uk.yDepartmentofEpidemiologyandPublicHealth,ImperialCollegeSchoolofMedicine,NorfolkPlace,London,W21PG.Email:sylvia.richardson@ic.ac.uk1inheritedpartlyfromthatofriskfactorsforthedisease.Spatiallystructuredheterogeneityalsoarisesnaturallyinagriculturaleldtrialsandotherapplications.Itisinterestingtocharacterisethisspatialstructurefurther,asdiscoveryofeitherlocaldiscon-tinuitiesorsmoothgradientscanbeexploitedforfurtherstudyoraction.Inepidemiology,currentaetiologicalhypothesesmadeattheindividuallevelcanbeusefullyconfrontedwiththeiraggre-gatedcounterparts,keepinginmindthedelicateissueofecologicalbias(GreenlandandRobins,1994).Thesuspicionofalocalexcessindiseaseoccurrenceorthehighlightingofgeographicalinequalitiesinmedicaltreatmentareimportantpublichealthconcernsthatcanbeaddressedbyananalysisofthespatialheterogeneity.Notethat,mostoften,weareinanobservationalframeworkwherethereislittleornocontroloverthesourcesofvariability.Ouraiminthispaperisthustoproposeanewclassofspatialmodelsfortheheterogeneityofcountdataandtodemonstrateitsexibility.Thisproblemhasusuallybeenaddressedinahierarchicalframework.WeshalldothesameinthedevelopmentofourBayesianapproach,andspecicallyconsideraPoissonmodelatthelowestlevelofthehierarchy:yiPoisson(iEi)independentlyfori=1;2;:::;n(1)whereyidenotestheobservedcountofdiseaseincidencesordeathsinareai,Eiistheexpectedcountbasedonpopulationsize,adjustedforageandsex,etc.,andiisanarea-specicrelativeriskvariable,themainobjectofourinference.Weusethesimpleterm\risktorefertothefiginfuture.Thequestionwhicharisesnextisthatofthechoiceofstructureforthejointdistributionofthefi;i=1;2;:::;ngatthenextlevelofthehierarchy,achoicewhichcanbeinuentialontheeectivesmoothingofthePoissonnoise.IntheseminalworkofBesag,YorkandMollie(1991)andClaytonandBernardinelli(1992),andsubsequentpapers,loglinearGaussianmodelsforthefigwerepostulatedusingaconditionalformulationthatincludedaspatialautoregressivecomponentbasedoncontiguityinanundirectedgraph.Thisapproachhasbeencommonlyadoptedinrecentworkindiseasemapping,andhashelpedtohighlightmanyinterestingfeaturesofthegeographicaldistributionofsomerarediseases.AlternativeformulationsalsoinvolvingamultivariateGaussianmodelfortheflogigwithspatiallyparametrisedcovariancematrixhavealsobeendiscussed(WakeeldandMorris,1999).Inbothcases,theparameterscharacterisingthespatialdependenceareconstantacrosstheentirestudyregion.Whenusingtheseparametricmodels,thereisthepotentialriskofover-smoothingandmaskingoflocaldiscontinuities,duetotheglobaleectoftheparameters.Thisdicultycanbeaddressedbythedevelopmentofclusteringmodels(Knorr-HeldandRaer,2000,DenisonandHolmes,2000),thatprov

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功