InterestRateModelsMarkBroadieB8835SecurityPricing:ModelsandComputation3DiscountFunctionComputationΔtq1-q02Δt3ΔtrrurdruurdurddΔt02Δt3Δt1111()uuB3()duB3()ddB3()uB3()dB3()B300123tttindex0123tindexLetBTx =priceinstatexof$1paidattimeT.Forsimplicity,useBix BiÑtx andBiBiÑt0 .TheinitialdiscountfunctionisBi,fori1;2;:::;n:Givenaninterestratelattice,howisthediscountfunctioncomputed?Step1.Use1-steplatticetocomputeB1.Step2.Use2-steplatticetocomputeB2.Step3.Use3-steplatticetocomputeB3.Totalwork:On3 .2Risk-NeutralPricingrurdrccucdInterestrateAssetpriceΔtΔtqq1-q1-q00ristherisk-freerateofinterestover0;Ñt.Thatis,risaÑt-periodrateand$1investedattime0willbeworth$erÑtattimeÑt.Therisk-neutralprobabilityofanupmoveisq.Therisk-neutralpricingequationis:cEe−rÑtcÑte−rÑtqcu1−q cd1 i.e.,thevalueattime0oftherandompayoffcÑtisthediscountedexpectedpayoffundertherisk-neutralmeasure.4ForwardInductionΔt2Δt3ΔtrurdruurdurddΔt02Δt3Δt1Δt02Δtr1000q1-q()-1eqΔ-trueqΔ-trdeuededdedueuueuuueduuedduedddeduLetex0 expriceattime0of$1paidinstatex(thestatepriceorArrow-Debreuprice).Thepriceattime0ofadiscountbondmaturingat2ÑtisB2euueudedd.Step1.euqe−rÑt;ed1−q e−rÑt=)B1Step2.eud1−q e−ruÑteuqe−rdÑted;euuqe−ruÑteu;edd1−q e−rdÑted=)B2Step3.euuuqe−ruuÑteuu;eddd1−q e−rddÑteddeuud1−q e−ruuÑteuuqe−rudÑteud;etc.Totalwork:On2 !5ForwardInduction:ExampleΔt2Δt3ΔtΔt02Δt3Δt109%10%8%11%7%12%6%9%10%8%1/21/2.4570.4570.2067.4177.2109.0926.2835.2892.0983Theinterestratelatticeontheleftgivesthestatepricesontheright.Theinitialdiscountfunctionis:B01,B10:9139,B20:8353,andB30:7636.Thecorrespondinginitialyieldcurveis:y19%,y28:998%,andy38:992%.(Ñt1yearinthisexample.)7PricingaCapletinaLatticeΔtq1-q02ΔtΔt02Δt1euededdedueuuLuLdLuuLduLddLSupposethelatticeisconstructedofsimplycompoundedratesandconsideracapletfortheperiod2Ñt;3Ñt,struckatK(withanotionalof$1).Iftherateattime2ÑtisL,apaymentofmaxL−K;0 Ñtismadeat3Ñt.Thevalueat2ÑtisÑt1LÑtmaxL−K;0 :Sothevalueofthecapletattime0isXstatesxat2ÑtÑt1Lx ÑtmaxLx −K;0 exIfthecontinuouslycompoundedlatticerateisr,converttoLusinge−rÑt11LÑtorL1ÑterÑt−1 :6PricingEuropeanDerivativeSecuritiesinaLatticeΔtq1-q02Δtrrurdruurdurdd3=ΔTtcuuucduucdducdddΔt02Δt3Δt1euededdedueuueuuueduuedduedddLetc=priceattime0ofcxreceivedinstatexattimeT.Whatisc?Canusebackwardinductionasbefore,e.g.,cuue−ruuÑtqcuuu1−q cuud;etc.ThisproceduredeterminescinworkwhichisOn2 .Alternatively,ifthestatepriceshavealreadybeencomputed,thencXxcxex(thesumisoverthen1statesxattimeTnÑt).WorkisOn .8EquivalenceBetweenCapsonRatesandPutsonBondsConsideracapletfortheperiodmÑt;m1 Ñt,struckatK.ThevalueofthecapletatmÑtwhentherateisLisÑt1LÑtmaxL−K;0 max1LÑt1LÑt−1KÑt1LÑt;01KÑt max11KÑt−11LÑt;0i.e.,thecapletisequivalentto1KÑt putsonaone-perioddiscountbondwithstrike11KÑtexpiringatmÑt.Acapletisequivalenttoanoptiontoenterintoaone-periodswap.Sinceacapisasumofcaplets,acapisalsoequivalenttoaportfolioofputsondiscountbonds.9EquivalenceBetweenSwaptionsandOptionsonCouponBonds01234…Discountfactorattime1:()B21()B31()B41Payfixed:KKK1+Kn+1()B+n11Considera1-yearoptiontoenterintoann-yearpayerswap(i.e.,payfixed,receivefloating)withastrikeofK(andanotionalprincipalof$1).Attime1,theswapisworthPV(floating)−PV(fixed).Assumingtheprincipalisexchangedattheendoftheswap,PV(floating)1.Also,PVfixed n1Xi2Bi1 KBn11 P1 ;i.e.,PV(fixed)valueofann-yearbondwithacouponofK.Sothepayoffoftheoptionismax1−P1 ;0 ,i.e.,itisequivalenttoaputwithastrikeof1onabondpayingacouponofK.11FlexibleCapsAflexiblecapgivestheholdertherighttoexercisesome(notall)ofthecapletscomprisingthecap.Example:RighttocapatKatmostthreeoutofthenextsevenquarterlyLiborrates.Auto-flexcap:In-the-moneycapletsareexercisedautomaticallyonfixingdatesuntilnoneareleft.Chooser-flexcap:Onfixingdates,theholdercanchoosewhethertoexerciseanin-the-moneycaplet(untilnoneareleft).Auto-flexcapsareEuropean-stylesecurities,butaremorecomplicatedthanplainvanillacapsbecausetheyarepath-dependent.Chooser-flexcapsareAmerican-style(holdercanchooseamongvariousexercisestrategies).10PricingaEuropeanSwaptioninaLatticeq1-q0rrurdruurdurdd01122330123KPuuu+=1KPduu+=1KPddu+=1KPddd+=1PuuPduPddPuPdSuSdSRatelatticeSwappricelatticeCouponbondpricelatticeWhatisthevaluetodayofa1-yearoptiontoenterintoa2-yearpayerswapwithastrikeofK(andanotionalprincipalof$1)?Swappricelattice:Sumax1−Pu;0 ,Sdmax1−Pd;0 ,andSXstatesxat1Sxexe−rqSu1−q Sd :Couponbondpricelattice:PuuKe−ruu1K ,PudKe−rud1K ;:::;Pde−rdqPud1−q Pdd :12ValuingChooser-FlexCapsinaLattice0123SimplycompoundedratelatticeFlex-cappricelatticeq1-q0123ij()V2,1()V1,1()V1,0()V1,2()V2,2()V3,2()() () ()⎜⎜⎝⎜⎛⎟⎟⎠⎟⎞jiVjiVjiVjiV10,,,,nk ()() ()⎜⎜⎝⎜⎛⎟⎟⎠⎟⎞+++jiVjiVjiV-nkk1,1,1,1 ()() ()⎜⎜⎝⎜⎛⎟⎟⎠⎟⎞++++++jiVjiVjiV-nkk11,11,11,1L1,0L1,1L2,1L1,2L2,2L3,2iNeedtorecordavectorofinformationateachnode:Vki;j valueofchooser-flexcapwithstrikeKattimeiandratejwithkremainingcaplets(nisthemaximumnumberofcapletsthatcanbeexercised).Vki;j maxdon’texercise;exercise ;don’t11Li;jÑt qVki1;j 1−q Vki1;j1 exercise