智能传感器技术的研究进展及应用展望

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

科技导报2016,34(17)收稿日期:2016-08-15;修回日期:2016-09-05作者简介:尤政,教授,中国工程院院士,研究方向为微纳技术及其空间应用,电子信箱:yz-dpi@mail.tsinghua.edu.cn引用格式:尤政.智能传感器技术的研究进展及应用展望[J].科技导报,2016,34(17):72-78;doi:10.3981/j.issn.1000-7857.2016.17.010智能传感器技术的研究进展及应用展望智能传感器技术的研究进展及应用展望尤政清华大学精密仪器系,北京100084摘要摘要随着智能时代的到来,各种智能传感器的研究和应用越来越受到人们的重视。智能传感器在传统传感器的基础上还具有丰富的信息处理能力,能够提供更综合的功能。本文介绍了常用的温度、压力、惯性、生化和RFID传感器的研究现状及其在物联网、虚拟现实(VR)、机器人、医疗健康等产业升级和创新应用中的关键作用,并对智能传感器今后的发展趋势进行了展望。关键词关键词智能传感器;微机电系统;物联网;产业化智能传感器(smartsensor)指具有信息检测、信息处理、信息记忆、逻辑思维和判断功能的传感器。相对于仅提供表征待测物理量的模拟电压信号的传统传感器,智能传感器充分利用集成技术和微处理器技术,集感知、信息处理、通信于一体,能提供以数字量方式传播的具有一定知识级别的信息。自美国宇航局(NASA)在20世纪80年代提出智能传感器的概念以来,经过几十年的发展,智能传感器已成为传感器技术的一个主要发展方向,代表着一个国家的工业及技术科研能力。在当前智能时代的推动下,传感器的重要性更加凸显,不仅在《中国制造2025》、《德国2020高技术战略》及欧盟、美国、韩国、新加坡等推进的智慧城市等战略方面发挥着重要的支撑作用,而且也在物联网、虚拟现实(VR)、机器人、智能家居、自动驾驶汽车等产业发展中发挥着关键作用。高性能、高可靠性的多功能复杂自动、测控系统以及基于射频识别技术的物联网的兴起与发展,愈发凸显了具有感知、认知能力的智能传感器的重要性及其大力、快速发展的迫切性。随着与CMOS兼容的MEMS技术的发展,微型智能传感器的发展得到了有力的技术支撑,智能传感器产业面临着一个非常重要的历史发展契机。本文综述不同种类智能传感器技术及应用的发展现状,并对今后的发展趋势做出展望。1丰富多样的智能传感器为满足各种智能化的应用需求,传感器类别非常多样化,例如:环境传感器、惯性传感器、模拟类传感器、磁性传感器、生物传感器、红外传感器、振动传感器、压力传感器、超声波传感器等。其中,以下传感器比较常用。环境传感器,主要有气体传感器、气压传感器、温度传感器、湿度传感器等。气体传感器可以应用于空气净化器、酒驾监测器、家装中甲醛等有毒气体的检测器以及工业废气的检测装置等。随着人们对环境问题的重视,环境传感器的重要性越来越凸显,未来有很大的发展空间。惯性传感器,主要应用在可穿戴产品上,比如智能手环、智能手表、VR头盔等。通过惯性传感器来检测运动的跟踪、识别,告知佩戴者当天的运动量、消耗的卡路里及运动的效果。磁性传感器,主要用在家用电器上,比如咖啡机、热水器、空调等,用来检测角度转了多少或者行程多少,通常显示在仪表盘上。此外,门磁和窗磁等方面采用的也是磁性传感器,机器人的智能化和精准度也需要磁性传感器做支撑。模拟类传感器,主要应用在智慧医疗设备上,可以作为心跳、心电图等信号的输入,并将健康数据进行可视化的输出,让用户了解自身第一手健康、运动数据。红外传感器常应用于红外摄像头、扫地机器人等智能家居方面。2智能传感器的技术研究进展一个真正意义的智能传感器应具有如下功能:1)自校准、自标定和自动补偿功能;2)自动采集数据、逻辑判断和数据处理功能;3)自调整、自适应功能;4)一定程度的存储、识别和信息处理功能;5)双向通信、标准数字化输出或者符号输出功能;6)算法判断、决策处理的功能。下面以常用的温度、压力、惯性、生化和RFID传感器为例,介绍智能传感技术的研究进展。2.1智能温度传感器温度传感器的发展大致经历了以下3个阶段:传统分立式温度传感器、模拟集成温度传感器和智能温度传感器。进入21世纪后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网72科技导报2016,34(17)络传感器、研制单片测温系统等方向迅速发展。目前的智能温度传感器包含温度传感器、A/D转换器、信号处理器、存储器和接口电路,有的产品还带有多路选择器、中央控制器、随机存取储存器和只读存储器。智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器,并且是在硬件的基础上通过软件实现测试功能,其智能化程度取决于软件开发水平。1)提高测量精度和分辨率。最早的智能温度传感器始于20世纪90年代中期,采用8位A/D转换器,其测温精度较低,分辨率只能达到1℃。目前,国外已相继推出多种高精度、高分辨率的智能温度传感器,使用9~12位A/D转换器,分辨率可以达到0.5~0.625℃。由美国Dallas半导体公司新研制的DS1624型高分辨力智能温度传感器,能输出13位二进制数据,分辨率高达0.03℃,测温精度为±0.2℃。为了提高多通道智能温度传感器的转换速率,也有的芯片采用高速逐次逼近式A/D转换器。以AD7817型5通道智能温度传感器为例,它对本地传感器、每一路远程传感器的转换时间分别仅为27ms、9ms[1]。在高精密温度测量方面,有学者设计了高性能数字温度传感器,该传感器由石英音叉谐振器,数字接口电路和基于现场可编程门阵列的传感器重置控制算法构成,传感器的灵敏度可以达到10-6℃的数量,即测温分辨率为0.001℃,响应时间1s,测量精度为0.01℃[2]。2)增强测试功能。新型智能温度传感器的测试功能不断增强。智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式。对于某些智能温度传感器,主机(外部微处理器或单片机)还可通过相应的寄存器设定其A/D转换速率、分辨率及最大转换时间。另外,智能温度传感器正从单通道向多通道方向发展,这就为研发多路温度测控系统创造了良好条件。3)总线技术的标准化与规范化。目前,智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(-Wire)总线、I2C总线、SMBus总线和SPI总线。4)可靠性及安全性设计。为了避免在温控系统受到噪声干扰时产生误动作,在一些智能温度传感器的内部,设置了一个可编程的故障排队计数器,专用于设定允许被测温度值超过上下限的次数。仅当被测温度连续超过上限或低于下限的次数达到所设定的次数才能触发中断端口,避免了偶然噪声干扰对温控系统的影响。为了防止因人体静电放电而损坏芯片,一些智能温度传感器还增加了静电保护电路,一般可以承受1~4kV的静电放电电压。例如TCN75型智能温度传感器的串行接口端、中断/比较信号输出端和地址输入端均可承受1kV的静电放电电压。LM83型智能温度传感器则可承受4kV的静电放电电压。2.2智能压力传感器智能压力传感器是微处理器与压力传感器的结合,因此它们的实现途径可以分为:非集成化智能压力传感器、集成化智能压力传感器和混合型智能压力传感器。非集成化的智能压力传感器是把传统的压力传感器、信号调理电路、带数字总线接口的微处理器组合成一体的智能压力传感器系统。这种非集成化的压力传感器实际上是传统压力传感器系统上增加了微处理器的连接。因此,这是一种实现智能压力传感器系统最快的途径和方式。集成化智能压力传感器是将压力敏感元件与信号处理、校准、补偿、微控制器等进行单片集成,主要采用微机电系统(MEMS)技术和大规模集成电路工艺技术,利用硅作为基体材料制作敏感元件、信号调理电路、微处理单元,并集成在一块芯片上。随着微电子技术的飞速发展以及微纳米技术的应用,由此制成的智能压力传感器具有微型化、结构一体化、精度高、多功能、阵列式、全数字化、使用方便、操作简单等特点。混合式智能压力传感器是根据需要与可能,将系统各个集成化环节,如敏感单元、信号调理电路、微处理器单元、数字总线接口,以不同组合方式集成在2~3块芯片上,并封装在一个外壳中。混合集成实现智能化是一种非常适合当前技术发展的智能化途径。在智能压力传感器系统中,微处理器能够按照给定的程序对传感器实现软件控制,把传感器从单一功能变为多功能。智能压力传感器一般具有以下基本功能[3]。1)数据处理功能。智能压力传感器不仅对各个被测参数进行测量,而且根据已知被测量参数,能够自动调零、自动平衡、自动补偿等。2)自动诊断功能。这是智能压力传感器的主要功能,智能压力传感器通过其故障诊断软件和自检测软件,自动对传感器和系统工作状态进行定期和不定期的检测、测试,及时发现故障,协助诊断发生故障的原因、位置,并给予操作提示。3)软件组态功能。智能压力传感器由于采用了微处理器,所以不仅有必要的硬件组成,例如检测、放大、A/D、D/A、通信接口等,而且还有软件资源用于控制和处理数据。在智能压力传感器中,设置有多模块化的硬件和软件,用户可以通过微处理器发送命令,完成不同的功能,增加了传感器的灵活性和可靠性。2.3智能惯性传感器惯性传感器,是MEMS传感器中得到最广泛应用的一类传感器,包括加速度计、陀螺仪和方位传感器。MEMS技术得天独厚的优势实现了惯性传感器的小型化并且降低了成本。现在的惯性测量模块(IMU)可以在10mm×10mm×4mm的尺寸内,集成三轴加速度计、三轴陀螺仪和三轴磁强计,而成本在1美元以内[4]。这种惯性测量模块可应用于智能手机、可穿戴设备上,实现包括步态监测、步数统计、跌倒检测、睡眠监测、室内导航等运动、健康方面的功能,同时也可以实现手势识别、方向感知等娱乐方面的功能[5]。1)更小、更灵活、更节能、高性能、73科技导报2016,34(17)高集成。应用于可穿戴设备上的智能惯性传感器,需要具有更小的尺寸,更低的功耗,作为体域网的一个节点实现数据的无线传输,最终实现柔性化。目前全球最小的三轴加速度计是博世公司在2014年发布的BMA355,采用晶圆级封装,尺寸仅为1.2mm×1.5mm×0.8mm,功耗极低,工作电流仅为130μA,而在低功耗模式下,电流可降低到1/10。此外,BMA355还具有强大的智能终端引擎,中断模式包括数据就绪同步、运动唤醒、敲击感测、方向识别、水平和竖直切换开关、低g值/高g值冲击检测、自由落体检测、节电管理等,可用于健康追踪器、计步器(智能手表和手环)、珠宝首饰等可穿戴设备[6]。除了可穿戴设备的应用外,惯性传感器在军事领域也有着广阔的应用和发展前景,不同于可穿戴设备上的要求,军事方面的应用对传感器精度、可靠性以及在极端条件下的稳定性提出了更高的要求。惯性传感器,利用质量块的惯性来对待测量进行测量,而MEMS传感器质量块小,以陀螺仪为例,其精度一般不如传统陀螺,在航空、航天等高端领域难以被直接应用。根据现阶段的工艺水平,采用单个MEMS陀螺的精度已经接近现阶段的极限,需要通过新的方法来提高MEMS陀螺仪的精度。2)多传感器集成与数据融合。考虑到MEMS传感器体积小、成本低,可以利用多传感器集成与数据融合技术来提高精度,即通过多个传感器的信息融合实现优于单个传感器的性能。NASA在2003年提出了虚拟陀螺的概念,即使用多个MEMS陀螺组成阵列,对同一信号进行冗余检测并输出多个检测值,采用数据融合技术对这些检测值进行分析综合,将陀螺阵列融合成一个虚拟陀螺,得到对输入角速率的最优估计值,大大提高了陀螺精度。其后,西北工业大学的微纳实验室对3个零偏稳定性为35.00(°)/h的微陀螺进行滤波处理,得到的虚拟陀螺漂移性能提高了200多倍[7],论证了虚拟陀螺概念的可行性,也为采用阵列化传感器提高精度提供了新方法、新思路。3)新的敏感机理。提高现有MEMS传感器性能的另一个方法是发现新的敏感机理。西北工业大学的微纳实验室在2015年展示了世界第一个基于模态局

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功