-1-因式分解练习题(提取公因式)专项训练一:确定下列各多项式的公因式。1、ayax2、36mxmy3、2410aab4、2155aa5、22xyxy6、22129xyzxy7、mxynxy8、2xmnymn9、3()()abcmnabmn10、2312()9()xabmba专项训练二:利用乘法分配律的逆运算填空。1、22____()RrRr2、222(______)Rr3、2222121211___()22gtgttt4、2215255(_______)aaba专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。1、__()xyxy2、__()baab3、__()zyyz4、22___()yxxy5、33()__()yxxy6、44()__()xyyx7、22()___()()nnabban为自然数8、2121()___()()nnabban为自然数9、1(2)___(1)(2)xyxy10、1(2)___(1)(2)xyxy11、23()()___()abbaab12、246()()___()abbaab专项训练四、把下列各式分解因式。1、nxny2、2aab3、3246xx4、282mnmn5、23222515xyxy6、22129xyzxy7、2336ayayy8、259ababb9、2xxyxz10、223241228xyxyy11、323612mamama12、32222561421xyzxyzxyz-2-13、3222315520xyxyxy14、432163256xxx专项训练五:把下列各式分解因式。1、()()xabyab2、5()2()xxyyxy3、6()4()qpqppq4、()()()()mnPqmnpq5、2()()aabab6、2()()xxyyxy7、(2)(23)3(2)ababaab8、2()()()xxyxyxxy9、()()pxyqyx10、(3)2(3)maa11、()()()ababba12、()()()axabaxcxa13、333(1)(1)xyxz14、22()()abababa15、()()mxabnxba16、(2)(23)5(2)(32)ababababa17、(3)(3)()(3)abababba18、2()()axybyx19、232()2()()xxyyxyx20、32()()()()xaxbaxbx21、234()()()yxxxyyx22、2123(23)(32)()()nnabbaabn为自然数-3-利用因式分解解答列各题。1、22已知a+b=13,ab=40,求2ab+2ab的值。2、32232132abab已知,,求ab+2ab+ab的值。专项训练六、利用因式分解计算。1、7.6199.84.3199.81.9199.82、2.1861.2371.2371.1863、212019(3)(3)634、198420032003200319841984专项训练七:利用因式分解证明下列各题。1、求证:当n为整数时,2nn必能被2整除。2、证明:一个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除。3、证明:2002200120003431037能被整除。专项训练八:利用因式分解解答列各题。1、22已知a+b=13,ab=40,求2ab+2ab的值。2、32232132abab已知,,求ab+2ab+ab的值。