1高中数学必修5知识点(一)解三角形1、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C的外接圆的半径,则有2sinsinsinabcRC.正弦定理的变形公式:①2sinaR,2sinbR,2sincRC;②sin2aR,sin2bR,sin2cCR;③::sin:sin:sinabcC;④sinsinsinsinsinsinabcabcCC.2、三角形面积公式:111sinsinsin222CSbcabCac.3、余弦定理:在C中,有2222cosabcbc,2222cosbacac,2222coscababC.4、余弦定理的推论:222cos2bcabc,222cos2acbac,222cos2abcCab.5、射影定理:coscos,coscos,coscosabCcBbaCcAcaBbA6、设a、b、c是C的角、、C的对边,则:①若222abc,则90C;②若222abc,则90C;③若222abc,则90C.(二)数列7、数列:按照一定顺序排列着的一列数.8、数列的项:数列中的每一个数.9、有穷数列:项数有限的数列.10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列.10nnaa12、递减数列:从第2项起,每一项都不大于它的前一项的数列.10nnaa13、常数列:各项相等的数列.14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.15、数列的通项公式:表示数列na的第n项与序号n之间的关系的公式.16、数列的递推公式:表示任一项na与它的前一项1na(或前几项)间的关系的公式.17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.218、由三个数a,,b组成的等差数列可以看成最简单的等差数列,则称为a与b的等差中项.若2acb,则称b为a与c的等差中项.19、若等差数列na的首项是1a,公差是d,则11naand.20、通项公式的变形:①nmaanmd;②11naand;③11naadn;④11naand;⑤nmaadnm.21、若na是等差数列,且mnpq(m、n、p、*q),则mnpqaaaa;若na是等差数列,且2npq(n、p、*q),则2npqaaa.22、等差数列的前n项和的公式:①12nnnaaS;②112nnnSnad.23、等差数列的前n项和的性质:①若项数为*2nn,则21nnnSnaa,且SSnd偶奇,1nnSaSa奇偶.②若项数为*21nn,则2121nnSna,且nSSa奇偶,1SnSn奇偶(其中nSna奇,1nSna偶).24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.25、在a与b中间插入一个数G,使a,G,b成等比数列,则G称为a与b的等比中项.若2Gab,则称G为a与b的等比中项.注意:a与b的等比中项可能是G26、若等比数列na的首项是1a,公比是q,则11nnaaq.27、通项公式的变形:①nmnmaaq;②11nnaaq;③11nnaqa;④nmnmaqa.28、若na是等比数列,且mnpq(m、n、p、*q),则mnpqaaaa;若na是等比数列,且2npq(n、p、*q),则2npqaaa.29、等比数列na的前n项和的公式:11111111nnnnaqSaqaaqqqq.330、等比数列的前n项和的性质:①若项数为*2nn,则SqS偶奇.②nnmnmSSqS.③nS,2nnSS,32nnSS成等比数列(0nS).(三)不等式31、0abab;0abab;0abab.32、不等式的性质:①abba;②,abbcac;③abacbc;④,0abcacbc,,0abcacbc;⑤,abcdacbd;⑥0,0abcdacbd;⑦0,1nnababnn;⑧0,1nnababnn.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24bac000二次函数2yaxbxc0a的图象一元二次方程2axbx0c0a的根有两个相异实数根1,22bxa12xx有两个相等实数根122bxxa没有实数根一元二次不等式的解集20axbxc0a12xxxxx或2bxxaR20axbxc0a12xxxx若二次项系数为负,先变为正35、设a、b是两个正数,则2ab称为正数a、b的算术平均数,ab称为正数a、b的几何平均数.36、均值不等式定理:若0a,0b,则2abab,即2abab.37、常用的基本不等式:①222,abababR;4②22,2abababR;③20,02ababab;④222,22abababR.38、极值定理:设x、y都为正数,则有⑴若xys(和为定值),则当xy时,积xy取得最大值24s.⑵若xyp(积为定值),则当xy时,和xy取得最小值2p.