2018高考数列专项1.记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.122.已知等比数列{an}的前n项和为Sn,S4=1,S8=3,则a9+a10+a11+a12=()A.8B.6C.4D.23.已知等比数列{an}的前n项和为Sn,a1+a3=,且a2+a4=,则等于()A.4n﹣1B.4n﹣1C.2n﹣1D.2n﹣14.已知数列{an}为等差数列,Sn是它的前n项和,若S4=20,a4=8,则S8=()A.52B.72C.56D.645.已知等差数列{an}的前n项和为Sn,S10=﹣10,a5=a3+4,则S30=()A.10B.180C.570D.1786.已知等比数列{an}公比为q,其前n项和为Sn,若S3、S9、S6成等差数列,则q3等于()A.﹣B.1C.﹣或1D.﹣1或7.已知等差数列{an}的前n项和为Sn,若2a11=a9+7,则S25=()A.B.145C.D.1758.记Sn为数列{an}的前n项和.若Sn=2an+1,则S6=.9.等比数列{an}的各项均为实数,其前n项和为Sn,已知S3=,S6=,则a8=.10.已知公差不为零的等差数列{an}中,a1=1,且a2,a5,a14成等比数列,{an}的前n项和为Sn,bn=(﹣1)nSn.则an=,数列{bn}的前n项和Tn=.11.已知数列{an}的前n项和是Sn,,4SnSn﹣1+Sn=Sn﹣1(n≥2),则Sn=.12.等比数列{an}中,a1=1,a5=4a3.(1)求{an}的通项公式;(2)记Sn为{an}的前n项和.若Sm=63,求m.13.已知数列{an}的前n项和为Sn,a1=,an>0,an+1•(Sn+1+Sn)=2.(1)求Sn;(2)求++…+.14.已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=.(1)求b1,b2,b3;(2)判断数列{bn}是否为等比数列,并说明理由;(3)求{an}的通项公式.15.已知数列{an}是递增的等差数列,a2=3,若a1,a3﹣a1,a8+a1成等比数列.(1)求数列{an}的通项公式;(2)若bn=,数列{bn}的前n项和Sn,求Sn.16.已知公差不为零的等差数列{an}中,a3=7,且a1,a4,a13成等比数列.(1)求数列{an}的通项公式;(2)记数列的前n项和Sn,求Sn.17.各项均为正数的等比数列{an}的前n项和为Sn.已知a1=3,S3=39.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{cn}满足,求数列{cn}的前n项和Tn.18.已知等比数列{an}的公比q>0,a2a3=8a1,且a4,36,2a6成等差数列.(1)求数列{an}的通项公式;(2)记,求数列{bn}的前n项和Tn.19.已知数列{an}是公差为1的等差数列,且a4,a6,a9成等比数列.(1)求数列{an}的通项公式;(2)设,求数列{bn}的前2n项和.20.Sn为数列{an}前n项和,已知an>0,an2+2an=4Sn+3,(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和.