列一元一次方程解应用题(设未知数,找等量关系列方程)一.利润率问题:利润=进价(成本价)×利润率利润=售价-进价利润率=(利润÷进价)×100%进价(成本价)﹢利润=售价1.某商品进价为500元,按标价的9折销售,利润率为15.2%,求商品的标价为多少元?2.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?3.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?4.某商品的进价是2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打几折出售此商品?5、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?6、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?二.储蓄问题:利息=本金×利率×期数本息和=本金+利息利息税=利息×税率年利率=月利率×12=日利率×3651.某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)2.某储蓄所去年储户存款为4600万元,今年与去年相比,定期存款增加20%,而活期存款减少25%,但总存款增加15%,问今年定期,活期存款各是多少?三.相遇问题(相向而行):这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。对应公式:路程=速度×时间快者路程+慢者路程=总路程(慢者速度+快者速度)×相遇时间=相遇路程1.甲、乙两车从相距264千米的A、B两地同时出发相向而行,甲速是乙速的1.2倍,4小时相遇,求乙速?2.甲、乙两站相距600千米,慢车从甲地出发,每小时行40千米,快车从乙地出发,每小时行60千米,若慢车先行50分钟,快车再开出,又行一段时间后遇到慢车,求快车开出多少小时两车相遇?3.A、B两地相距75千米,一辆汽车以50千米/时的速度从A地出发,另一辆汽车以40千米/时速度从B地出发,两车同时出发,相向而行,经过几小时两车相距30千米?四.追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。①同时不同地:快者的时间=慢者的时间快者走的路程-慢者走的路程=原来相距的路程:1.甲车在乙车前500千米,同时出发,速度分别是40千米/小时和60千米/小时,多少小时后,乙车追上甲车?2.A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米,若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?②同地不同时;先走者的时间=慢走者的时间+时间差先走者的路程=慢走者的路程1.一列慢车从某站开出,每小时行驶48km,过了45分,一列快车从同站开出,与慢车同向而行,又经过1.5小时追上了慢车。求快车的时速?2.一队学生去学校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?五.环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。1.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?2.甲,乙二人在400米的环形跑道上跑步,已知甲的速度比乙快,如果二人在同一地方出发,同向跑,则3分20秒,相遇一次,若反向跑,则40秒相遇,求甲跑步的速度每秒跑多少米?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么经过2分钟他们两人就要相遇。如果2人从同一地点同向而行,那么经过20分钟两人相遇。如果甲的速度比乙的速度快,求两人散步的速度?六.行船问题:顺流航速=船的静水速度+水流速度逆流航速=船的静水速度-水流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1汽船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5小时。已知船在静水的速度为18千米/小时,水流速度为2千米/小时,求甲、乙两地之间的距离?2.一艘船航行于A,B两个码头之间,顺水航行需要2个小时,逆水航行需要4个小时,已知水流速度是4千米/时,求这两个码头之间的距离。3、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。已知水流的速度是3千米/时,求船在静水中的速度七.飞机问题:顺风速=飞机无风速+风速逆风速=飞机无风速—风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.一架飞机在两地之间飞行风速为16千米/时,顺飞飞行需要3小时,逆风飞行需要5小时,求无风时飞机的航速和两地之间的航程?2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离?八、方案问题1、已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费。某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?2、某通讯公司推出了甲、乙两种市内移动通讯业务。甲种使用者需每月缴纳15元月租费,然后每通话1分钟,再付花费0.3元;乙种使用者不缴纳月租费,每通话1分钟,付花费0.6元。根据一个月的通话时间,选择哪种方式更优惠?3、有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果有40㎡墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。每名师傅比徒弟一天多刷30㎡的墙面。求每个房间需要粉刷的墙面面积是多少平方米?4、为鼓励节约用电,某地用电收费标准规定:如果每户每月用电不超过150kw﹒h,那么1kw﹒h电按0.5元缴纳;超过部分则按1kw﹒h电0.8元缴纳。如果小张家某月缴纳的电费为147.8元,那么小张家该月用电多少?5、某道路一侧原有路灯106盏(两端都有),相邻两盏灯的距离为36m,现计划全部更换为新型的节能灯,且相邻两盏灯的距离为70m.则需安装新型节能灯多少盏?列一元一次方程解应用题(设未知数,找等量关系列方程)一.和差倍分的问题:问题的特点:已知两个量之间存在合倍差关系,可以求这两个量的多少。基本方法:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。例.某实验中学举行田径运动会,初一年级甲班和丙班参加的人数的和是乙班参加的人数的3倍,甲班有40人参加,乙班参加的人数比丙班参加的人数少10人,你能算出乙班参加校运会的人数吗?分析数量关系:。解:设乙班参加校运会的人数为x,则丙班参加的人数就是人。根据题意可列出方程为。1.把若干本书发给学生,如果每人发4本,还剩余2本,如果每人发5本,则还有一名学业生没领到书.求共有多少名学生?2.一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?3.某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?4.七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?5.一种小麦磨成面粉重量将减少15%,为了得到6375千克面粉,需要多少小麦?6、小明看书若干日,若每日读书32页,尚余31页;若每日读书36页,则最后一天需要读39页,才能读完。这本书共多少页?二.等积变形问题:此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。1.把内径为200mm,高为500mm的圆柱形铁桶,装满水后慢慢地向内径为160mm,高为400mm的空木桶装满水后,铁桶内水位下降了多少?2.要锻造一个直径为8cm,高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。1、一个长方形的周长为26㎝,这个长方形的长减少1㎝,宽增加2㎝,就可成为一个正方形,则原长方形的长和宽各为多厘米?2、在一个底面直径为30厘米,高为8厘米的圆锥体容器中倒满水,然后将水倒入一个底面直径为10厘米的圆柱体空容器内,圆柱体容器内的水有多高?三、比赛积分问题1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了几道题?2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?3、小明在一次篮球比赛中,共投中15个球(其中包括2分球和3分球),共得34分,则小明共投中2分球和3分球各多少个?四.工程问题:把工作总量设为1,工作总量=工作效率×工作时间工作效率=工作量×工作时间合做的效率=各单独做的效率的和例.某车间计划生产a个零件,原计划每天生产x个,按计划要天完成;提高效率后,实际每天比原计划多生产10个零件,实际要天完成;若实际比原计划提前m天完成生产计划,则按此条件列出的方程。1.一件工作甲单独做要4天完成,乙独做要6天完成,则两人合作几天完成2.某项工程,甲单独完成要45天,乙独做要30天,若乙先单干22天,余下的由甲完成,问甲、乙一共用几天可全部完成任务?3.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?4.某车间每天装配6台机床,预计若干天装配完成一批机床,在装配了这批机床的以后,改进了工艺水平,工效提高到原来的4倍,结果比预期提前10天完成,求这批机床的台数为多少?5、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?6.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时.一天晚上停电,小芳同时点燃了这两支蜡烛看书,若干分钟后来电了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问停电多少分钟?五.比例问题:一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。例:若甲:乙=2:3,可设甲为2x,乙为3x常用等量关系:全部数量=各成分的数量之和1、某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?2.现有蔬菜地975公顷,种植白菜、西红柿和芹菜,期中种白菜和西红柿的面积比是3:2,种西红柿和芹菜的面积比是5:7,则三种蔬菜各种多少公顷?3.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.六、分配问题1、甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人数的一半还多15人,求甲、乙两队原有人数各多少人?2、甲、乙两车间各有工人若干,如果从乙车间调100人去甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人去乙车间,则两车间的人数相等。求原来甲、乙车间各有多少人?3、工厂有工人共28人,已知1人一