基于PLC的机械手设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

目录摘要····································································································1引言····································································································11.机械手总体方案设计····································································21.1设计要求·······················································································21.2运动形式的选择············································································21.3驱动方式的选择············································································41.4总体结构设计················································································52.机械手手部设计············································································62.1结构分析·······················································································62.2计算分析·······················································································63.PLC控制系统设计·········································································113.1机械手移动工件控制系统的控制要求··············································113.2机械手移动工件控制系统的PLC选型和资源配置···························133.3机械手移动工件控制系统的PLC程序············································144.动画制作························································································184.1建立机械手模型·············································································184.2制作机械手的动画·········································································18结束语·································································································26致谢·····································································································26参考文献····························································································26附录·····································································································27摘要机械手设计包括机械结构设计,检测传感系统设计和控制系统设计等,是机械、电子、检测、控制和计算机技术的综合应用。本课题通过对设计要求的分析,设计出机械手的总体方案,重点阐述了手部结构的设计以及控制系统硬软件的设计,完成了整个系统工作的动画设计。实现了机械手的基本搬运功能,达到了预期要求,具有一定的应用前景。关键词:机械手PLC动画引言随着世界经济和技术的发展,人类活动的不断扩大,机器人应用正迅速向社会生产和生活的各个领域扩展,也从制造领域转向非制造领域,各种各样的机器人产品随之出现。像海洋开发、宇宙探测、采掘、建筑、医疗、农林业、服务、娱乐等行业都提出了自动化各机器人化的要求。随着机器人的产生和大量应用,很多领域,许多单一、重复的机械工作由机器人(也称机械手)来完成。工业机器人是一种能进行自动控制的、可重复编程的,多功能的、多自由度的、多用途的操作机,广泛采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。机械手是一种模仿人手动作,并按设定的程序来抓取、搬运工件或夹持工具,机械手可在空间抓放物体,动作灵活多样,适用于可变换生产品种的中、小批量自动化生产,广泛应用于自动生产线、自动机的上下料、数控设备的自动换刀装置中。机械手一般由执行系统、驱动系统、控制系统和人工智能组成,主要完成移动、转动、抓取等动作。控制系统是机械手的指挥系统,它通过控制驱动系统,让执行器按照规定的要求进行工作,并检测其正确与否。可编程控制器(PLC)是一种数定运算操作的电子系统,它将逻辑运算、顺序控制、时序、计数、算术运算等控制程序,用指令形式存放在存储器中,并通过数字式、模拟式的输入和输出,控制各种机械或生产过程。与继电器控制线路相比,PLC具有可靠性高、抗干扰能力强;编程简单、使用方便;设计、安装容易,维护工作量少;功能完善、通用性强;体积小、能耗低等特点。因此,机械手控制系统越平越多的由可编程控制器来实现。1.机械手总体方案设计1.1设计要求:1.机械手能够完成从一个工作点取物体旋转一定角度,放到另一个工作点上。2.要求完成手抓结构的设计,进行夹紧力的计算分析。初值给定如下:工件质量m=0.1kg摩擦系数μ=0.15重力加速度g=9.8m/s2垂直加速度a=0.3g=2.94m/s2水平加速度a=0.3g=2.94m/s2回转半径r=0.5m角速度ω=3.5rad/s角加速度β=2.1rad/s2安全系数S=1.45夹角φ=45°3.要求选用PLC作为控制系统。1.2运动形式的选择:根据主要的运动参数选择运动形式是结构设计的基础。常见机器人的运动形式有四种,下面分别论述其特点,然后确定运动形式。1.直角坐标型机器人直角坐标型机器人的结构简图如图1-1所示,它在x,y,z轴上的运动是独立的,3个关节都是移动关节,关节轴线相互垂直,它主要用于生产设备的上下料,也可用于高精度的装卸和检测和作业。这种形式的主要特点是:(1)在三个直线方向上移动,运动容易想象。(2)计算比较方便。(3)由于可以两端支撑,对于给定的结构长度,其刚性最大。(4)要求保留较大的移动空间,占用空间较大。(5)要求有较大的平面安装区域。(6)滑动部件表面的密封较困难,容易被污染。2.圆柱坐标型机器人圆柱坐标型机器人的结构简图如图1-2所示,R、θ和x为坐标系的三个坐标,其中R是手臂的径向长度,θ是手臂的角位置,x是垂直方向上手臂的位置。这种形式的主要特点是:(1)容易想象和计算。(2)能够伸入形腔式机器内部。(3)空间定位比较直观。(4)直线驱动部分难以密封、防尘及防御腐蚀物质。(5)手臂端部可以达到的空间受限制,不能到达靠近立柱或地面的空间。3.极坐标型机器人极坐标型机器人又称为球坐标机器人,其结构图如图1-3所示,R,θ和β为坐标系的坐标。其中θ是绕手臂支撑底座垂直轴的转动角,β是手臂在铅垂面内的的摆动角。这种机器人运动所形成的轨迹表面是半球面。其特点是:(1)在中心支架附近的工作范围较大。(2)两个转动驱动装置容易密封。(3)覆盖工作空间较大。(4)坐标系较复杂,较难想象和控制。(5)直线驱动装置仍存在密封问题。(6)存在工作死区。4.多关节机器人多关节机器人结构简图如图1-4所示,它是以其各相邻运动部件之间的相对角位移作为坐标系的。θ、α和φ为坐标系的坐标,其中θ是绕底座铅垂轴的转角,φ是过底座的水平线与第一臂之间的夹角,α是第二臂相对于第一臂的转角。这种机器人手臂可以达到球形体积内绝大部分位置,所能达到区域的形状取决于两个臂的长度比例。其特点是:(1)动作较灵活,工作空间大。(2关节驱动处容易密封防尘。(3)工作条件要求低,可在水下等环境中工作。(4)适合于电动机驱动。(5)运动难以想象和控制,计算量较大。(6)不适于液压驱动。θ图1-1直角坐标型图1-2圆柱坐标型βθαφθ图1-3极坐标型图1-4多关节型选择方案的准则:1.满足设设计要求:机械手能够旋转一定角度。2.结构简单,便于计算分析。分析比较以上四种运动形式,确定选用圆柱坐标型机器人。1.3驱动方式的选择:机器人关节的驱动方式有液压式、气动式、和电动式。下面将三种驱动方式进行分析比较。1.液压驱动机器人的驱动系统采用液压驱动,有以下几个优点:(1)液压容易达到较高的压力(常用液压为2.5~6.3MPa),体积较小,可以获得较大的推力或转矩;(2)液压系统介质的可压缩性小,工作平稳可靠,并可得到较高的位置精度;(3)液压传动中,力、速度和方向比较容易实现自动控制;(4)液压系统采用油液作介质,具有防锈性和自润滑性能,可以提高机械效率,使用寿命长。液压传动系统的不足之处是:(1)油液的粘度随温度变化而变化,影响工作性能,高温容易引起燃爆炸等危险;(2)液体的泄漏难于克服,要求液压元件有较高的精度和质量,故造价较高;(3)需要相应的供油系统,尤其是电液伺服系统要求严格的滤油装置,否则会引起故障。液压驱动方式的输出力和功率更大,能构成伺服机构,常用于大型机器人关节的驱动。2.气压驱动与液压驱动相比,气压驱动的特点是:(1)压缩空气粘度小,容易达到高速;(2)利用工厂集中的空气压缩站供气,不必添加动力设备;(3)空气介质对环境无污染,使用安全,可直接应用于高温作业;(4)气动元件工作压力低,故制造要求也比液压元件低。它的不足之处是:(1)压缩空气常用压力为0.4~0.6MPa,若要获得较大的力,其结构就要相对增大;(2)空气压缩性大,工作平稳性差,速度控制困难,要达到准确的位置控制很困难;(3)压缩空气的除水问题是一个很重要的问题,处理不当会使钢类零件生锈,导致机器人失灵。此外,排气还会造成噪声污染。气动式驱动多用于点位控制、抓取、开关控制和顺序控制的机器人。3.电动机驱动电动机驱动可分为普通交、直流电动机驱动,交、直流伺服电动机驱动和步进电动机驱动。普通交、直流电动机驱动需加减速装置,输出力矩大,但控制性能差,惯性大,适用于中型或重型机器人。伺服电动机和步进输出力矩相对小,控制性能好,可实现速度和位置的精确控制,适用于中小型机器人。交、直伺服电动机一般用于闭环控制系统,而步进电动机则主要用于开环控制系统,一般用于速度和位置精度要求不高的场合。本课题设计的机械手的特点:1.点位控制进行搬运工作,采用顺序控制方式。2.负载小,精度要求不高。3.

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功