:2006-12-01;:2007-12-03.:(10472003);(20060005010).:(1943-),,,(E-mail:ysui@bjut.edu.cn.).第25卷第3期2008年6月 ChineseJournalofComputationalMechanicsVol.25,No.3June2008:1007-4708(2008)03-0345-07ICM隋允康*1, 边炳传2, 叶红玲1(1.,100022;2.,271021) :基于ICM(独立、连续、映射)方法解决具有屈曲约束的连续体拓扑优化问题。建立以结构重量为目标,以屈曲临界力为约束的拓扑优化模型;采用独立的连续拓扑变量,借助泰勒展式将目标函数作二阶近似展开;借助瑞利商、泰勒展式、过滤函数将约束化为近似显函数,避免了灵敏度的计算;将优化模型转化为对偶规划,并利用序列二次规划求解,减少了设计变量的数目,缩小了模型的求解规模。给出三个算例,结果表明:该方法可有效地解决屈曲约束的连续体拓扑优化问题,能够得到合理的拓扑结构,并有较高的计算效率。:ICM方法;屈曲约束;拓扑优化;过滤函数:O346.1 :A1 ,、,。、、,,。,。、,,。,:D.Manick-arajah[1,3]ESO(EvolutionalStructuralOp-timization);[2];LiuTao[4];[5]ESO;[6];[7,9];[8]。,[10];[11]。ICM,[12]、、,,(,),,01,,0-1,,,。,ICM、、,、、,[12-18]。ICM,、,、,,;,。2 2.1 ,,,,,,,。,,,,:,,,,:(K+λjG)uj=0 (j=1,…,J)(1)K,G,J,λjj,,uj。λj=ζjP(2)ζj,P。:,,ti=0,;ti=1。0-1,,。,、,“”,,,,,。,ICM[12-18],,,,“--”。,,,,fw(ti)=tai,fk(ti)=tbi,fg(ti)=tbi(3)t,ab,a=1,b=3.3。,,wi=fw(ti)w0i,ki=fk(ti)k0i,gi=fg(ti)g0i(4)wi,ki,gi,,w0i,k0i,g0i,,,ti=1,。,,: t∈EN W=∑Ni=1fw(ti)w0i※mins.t.λj(fk(ti),fg(ti))≤λ-j (j=1,…,J) 0≤ti≤1 (i=1,…,N)(5)t,W,λ-j,J,N。2.2 ,,(1):λj=-uTjKuj/uTjGuj(6)λt,,。,。,(3)(4)K=∑Ni=1k0itbi=K(t),G=∑Ni=1g0itbi=G(t)(7)(7)(1)(K(t)+λjG(t))uj=0(8)(8)uj=uj(t)(9)(9)(8)(K(t)+λjG(t))uj(t)≡0(10)346计算力学学报 第25卷 λj=λj(t)(11)λj/ti,(10)uTj(t) uTj(t)K(t)uj(t)+λjuTj(t)G(t)uj(t)≡0(12),:xi=1/tbi(13),(7)(12)K=∑Ni=1k0i/xi, G=∑Ni=1g0i/xi(14) uTj(x)K(x)uj(x)+λj(x)uTj(x)G(x)uj(x)≡0(15)(15)xi, 2(uj/xi)T(K+λjG)uj+ (λj/xi)uTjGuj+uTj(K/xi)uj+ λjuTj(G/xi)uj=0(16)(1), λj/xi=-[uTj(K/xi)uj+λjuTj(G/xi)uj]/uTjGuj(17) K/xi=-k0i/x2i=-ki/xi G/xi=-g0i/x2i=-gi/xi(18)(18)(17), λj/xi=(uTjkiuj/2+λjuTjgiuj/2)/(uTjGujxi/2)=(Uij+λjVij)/Vjxi(19)Uij=uTjkiuj/2ji,Vij=uTjgiuj/2ji,Vj=uTjGujxi/2j。、,,。:λj(t)=λj(x(k))+∑Ni=1λj/xi(xi-x(k)i)=λj(x(k))+∑Ni=1xi/Vjx(k)i(U(k)ij+λjV(k)ij)-∑Ni=1(U(k)ij+λjV(k)ij)/Vj(20)kk。λj≤λ-j:∑Ni=1xi(U(k)ij+λjV(k)ij)/Vjx(k)i≤λ-j-λj(x(k))+∑Ni=1(U(k)ij+λjV(k)ij)/Vj(21)A(k)ij=(U(k)ij+λjV(k)ij)/Vj,(21):∑Ni=1xi(U(k)ij+λjV(k)ij)/Vjx(k)i=∑Ni=1A(k)ijxi/x(k)i=∑Ni=1(t(k)i)bA(k)ijxi=∑Ni=1dijxi(22)dij=(t(k)i)bA(k)ij,(21): λ-j-λj(x(k))+∑Ni=1(U(k)ij+λjV(k)ij)/Vj= λ-j-λj(x(k))+∑Ni=1A(k)ij=ej(23)(22)(23)∑Ni=1dijxi≤ej(24)。2.3 (5)W=∑Ni=1fw(ti)w0i(25),fw(ti)=tai,(13)ti=1/x1/bi,fw(ti)=1/xa/bi(26)a/b=β,fw(ti)=1/xβi,(25),W=∑Ni=1w0i/xβi(27),,, W=∑Ni=1{[w0iβ(β+1)/2x(k)β+2i]x2i+[-w0iβ(β+2)/x(k)β+1i]xi}(28)x(k)iik。 Ai=w0iβ(β+1)/2x(k)β+2iBi=-w0iβ(β+2)/x(k)β+1iW=∑Ni=1(Aix2i+Bixi),347 第3期隋允康,等:连续体结构屈曲约束的ICM方法拓扑优化 x∈EN W=∑Ni=1(Aix2i+Bixi)※mins.t.∑Ni=1dijxi≤ej(j=1,…,J) 1≤xi≤x-i(i=1,…,N)(29)2.4 ,。,,: μ∈EJ Υ(μ)※maxs.t.μ≥0(30)Υ(μ)=min1≤xi≤x-i(L(x,μ)), L(x,μ)=∑Ni=1(Aix2i+Bixi)+∑Ji=1μj∑Ni=1dijxi-ej(31)(31)xi,-,L(x,μ)/xi=2Aix*i+Bi+∑Jj=1μjdij≤0(x*i=x-i)=0(1x*ix-i)≥0(x*i=1)(32)Ia={i|1x*ix-i},:2Aix*i+Bi+∑Jj=1μjdij=0μk,x*i/μk=-dik/2Ai(33)Υ(μ),。(31)、,Υ(μ)/μj=∑Ni=1dijx*i-ej(34)2Υ(μ)/μjμk=∑Ni=1dijx*i/μk(35)(33)(35),2Υ(μ)/μjμk=-∑Ni=1dijdik/2Ai(36)Υ(μ): μ∈EJ -Υ(μ)=12μTDμ+HTμ※mins.t.μj≥0 (j=1,…,J)(37)Hj=-∑Ni=1dijx*i+ej+∑Ni=1dij(2Aix*i+Bi)/2AiDjk=-∑Ni=1dijdik/2Ai,μ,(32),,,‖x(k+1)-x(k)‖/‖x(k)‖≤ε,x*,(13)t*,t(k+1)=t*,,,: ΔW=|(W(k+1)-W(k))/W(k+1)|≤ε(38)W(k)W(k+1),ε,ε=0.001。3 1 1(a),520mm×260mm×2mm,E=68890MPa,ν=0.3,ρ=1.0×10-3kg/mm3。100N/mm,P=52000N,,,52×26,270.400kg。ζ1=0.002511,Pcr=130.572N,Pcr=100N,,51,1(b),115.756kg,1(c),100.5888N,1(d)。,100.5888N,0.5888%,115.756kg,42.78%,57.22%。348计算力学学报 第25卷 1 1Fig.1 Definitionandoptimalresultsofexample12 2Fig.2 Definitionandoptimalresultsofexample2 2 2(a),520mm×260mm×2mm,E=68890MPa,ν=0.3,ρ=1.0×10-3kg/mm3,,P=53×300=15900N,;、,52×26,270.400kg。ζ1=0.017709,Pcr=281.573N,Pcr=200N,。47,2(b),113.512kg,200.976N。3 3(a),120mm×45mm×8mm,E=70×103MPa,ν=0.3,ρ=2.7kg×10-6/mm3,P=12500N,,,,40×15×48,0.11664kg。ζ1=2.7551,Pcr1=34438.75N,Pcr=28000N,,32,3(b);3(c),0.05167kg,3(d)。349 第3期隋允康,等:连续体结构屈曲约束的ICM方法拓扑优化3 3Fig.3 Definitionandoptimalresultsofexample34 ICM,,,,:(1)ICM,,、、,。(2),。。(References):[1] MANICKARAJAHD,XIEYM,STEVENGP.Anevolutionarymethodforoptimizationofplatebuck-lingresistance[J].FiniteElementsinAnalysisandDesign,1998,29:205-230.[2] GUYX,ZHAOGZ,ZHANGHW,etal.Bucklingdesignoptimizationofcomplexbuilt-upstructureswithshapeandsizevariables[J].StructMultidiscOptim19Springer-Verlag,2000:183-191.[3] MANICKARAJAHD,XIEYM,STEVENGP.Optimisationofcolumnsandframesagainstbuckling[J].ComputersandStructures,2000,75:45-54.[4] LIUT,XUQN,PEIJH.Bucklinganalysisandoptimizationdesignofcompositecylindricalshells[J].JournalofShipMechanics,2000,6(4):39-50.[5] RONGJH,XIEYM,YANGXY.Animprovedmethodforevolutionarystructuraloptimizationa-gainstbuckling[J].ComputersandStructures,2001,79:253-263.[6] 顾元宪,赵国忠,李云鹏.复合材料层合板屈曲稳定性优化设计及其灵敏度计算方法[J].复合材料学报,2002,19(4):81-85.(GUYuan-xian,ZHAOGuo-zhong,LIYun-peng.Optimumdesignandsensitivityanalysisforbucklingstabilityofcompositelaminatedplates[J].ActaMateriaeCompositaeSinica,2002,19(4):81-85.(inChinese))[7] 梁 斌,乐金朝.弹性圆柱壳的稳定性优化设计[J].机械强度,2002,24(3):463-465.(LIANGBin,YUEJin-chao.Optimumdesignofcylindricalshellonsta-bility[J].JournalofMechanicalStrength,2002,24(3):463-465.(inChinese))[8] 赵国忠,高 剑,顾元宪.基于分层设计变量的复合材料层合板优化设计及灵敏度分析[J].工程力学,2003,20(2):60-65