指数运算与对数运算一、知识点1、指数的运算性质:(1)(2)(3)2、分数指数幂与根式的关系:3、对数的运算性质:(1);(2);(3);(4);(5);(6);4、换底公式:(1)(2)(3)。二、典型例题1、指数的运算例1、(1)化简[32)5(]43的结果为()A.5B.5C.-5D.-5(2)将322化为分数指数幂的形式为()A.212B.312C.212D.652(3)化简4216132332)b(abbaab(a,b为正数)的结果是()A.abB.abC.baD.a2b例2、计算下列各题:(1)13256)71(027.0143231.(2)321132132)(abbababa=__________.(3)48373)27102(1.0)972(032221(4))31()3)((656131212132bababa2、对数的运算例3、计算下列各式:(1)222lg5lg8lg5lg20(lg2)3;(2)24525log5+log0.2log2+log0.5.(3))347(log)32((4))3232(log6(5)12log4log)7.0()827(2331lg312例4、化简下列各对数式:(1)ccbaaalog1loglog=(2)abacccalogloglog=(3)2)2(lg50lg2lg25lg=(4)xxxxxxxlglg21lg)lg(lglg)lg(lg)lg(lg)(lg2222=例5、给条件求值:(1)已知ba4log,7log36,求7log12(2)已知,15533515cba求acbcab35(3)若0)](log[loglog)](log[loglog)](log[loglog324243432zyx,则zyx。(4)已知)2lg(lglg)2lg(33yxyxyx,求值yxyx32例6、指、对方程与不等式:(1)5213222)21(2xxxx(2)05052352xx(3))6(log3)2(log)14(log222xxx(4))12lg(21155lgxx(5)01)](log[loglog232x(6))13(log)152(log5.025.0xxx二、巩固练习1、用分数指数幂的形式表示下列各式:(1)34yx=(2))0(2mmm(3)851323xx=(4)323abab=2、求下列各式的值(1)3227=;(2)23)425(=;(3)2325=(4)122[(2)]=3.化简(1)654323aaa(2)aaa9)(34323(3)322aaa=(4)3231312212xxx=4、化简求值(1)lg5·lg8000+06.0lg61lg)2(lg23.(2)10log5log)5(lg)2(lg2233·.10log18(3)lg25+lg2·lg50;(4)(log43+log83)(log32+log92).5、log1227=a,求log616.6、求log927的值.7、设3a=4b=36,求a2+b1的值.