高三物理电磁感应计算题集锦1.(18分)如图所示,两根相同的劲度系数为k的金属轻弹簧用两根等长的绝缘线悬挂在水平天花板上,弹簧上端通过导线与阻值为R的电阻相连,弹簧下端连接一质量为m,长度为L,电阻为r的金属棒,金属棒始终处于宽度为d垂直纸面向里的磁感应强度为B的匀强磁场中。开始时弹簧处于原长,金属棒从静止释放,水平下降h高时达到最大速度。已知弹簧始终在弹性限度内,且弹性势能与弹簧形变量x的关系为221kxEp,不计空气阻力及其它电阻。求:(1)此时金属棒的速度多大?(2)这一过程中,R所产生焦耳热QR多少?2.(17分)如图15(a)所示,一端封闭的两条平行光滑导轨相距L,距左端L处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H的水平面上。圆弧导轨所在区域无磁场,右段区域存在磁场B0,左段区域存在均匀分布但随时间线性变化的磁场B(t),如图15(b)所示,两磁场方向均竖直向上。在圆弧顶端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t0滑到圆弧顶端。设金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?⑵求0到时间t0内,回路中感应电流产生的焦耳热量。⑶探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小和方向。Rd3、(16分)t=0时,磁场在xOy平面内的分布如图所示。其磁感应强度的大小均为B0,方向垂直于xOy平面,相邻磁场区域的磁场方向相反。每个同向磁场区域的宽度均为l0。整个磁场以速度v沿x轴正方向匀速运动。⑴若在磁场所在区间,xOy平面内放置一由n匝线圈串联而成的矩形导线框abcd,线框的bc边平行于x轴.bc=lB、ab=L,总电阻为R,线框始终保持静止。求:①线框中产生的总电动势大小和导线中的电流大小;②线框所受安培力的大小和方向。⑵该运动的磁场可视为沿x轴传播的波,设垂直于纸面向外的磁场方向为正,画出t=0时磁感应强度的波形图,并求波长λ和频率f。4、(16分)如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L=0.2m,一端通过导线与阻值为R=1Ω的电阻连接;导轨上放一质量为m=0.5kg的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B=0.5T的匀强磁场中.现用与导轨平行的拉力F作用在金属杆上,金属杆运动的v-t图象如图乙所示.(取重力加速度g=10m/s2)求:(1)t=10s时拉力的大小及电路的发热功率.(2)在0~10s内,通过电阻R上的电量.FRB图甲t/s15105024v(m/s)图乙××××××××××××××××××abcdxyOl0l0v05、(20分)如图所示间距为L、光滑的足够长的金属导轨(金属导轨的电阻不计)所在斜面倾角为两根同材料、长度均为L、横截面均为圆形的金属棒CD、PQ放在斜面导轨上.已知CD棒的质量为m、电阻为R,PQ棒的圆截面的半径是CD棒圆截面的2倍。磁感应强度为B的匀强磁场垂直于导轨所在平面向上两根劲度系数均为k、相同的弹簧一端固定在导轨的下端另一端连着金属棒CD开始时金属棒CD静止,现用一恒力平行于导轨所在平面向上拉金属棒PQ.使金属棒PQ由静止开始运动当金属棒PQ达到稳定时弹簧的形变量与开始时相同,已知金属棒PQ开始运动到稳定的过程中通过CD棒的电量为q,此过程可以认为CD棒缓慢地移动,已知题设物理量符合sin54mgBLqRk的关系式,求此过程中(l)CD棒移动的距离;(2)PQ棒移动的距离(3)恒力所做的功。(要求三问结果均用与重力mg相关的表达式来表示).6、(12分)如图所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为θ。整个装置处在磁感应强度为B、方向垂直于导轨平面且向上的匀强磁场中。AC端连有阻值为R的电阻。若将一质量为M、垂直于导轨的金属棒EF在距BD端s处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。现用大小为F、方向沿斜面向上的恒力把金属棒EF从BD位置由静止推至距BD端s处,此时撤去该力,金属棒EF最后又回到BD端。求:(1)金属棒下滑过程中的最大速度。(2)金属棒棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能(金属棒ACEFBR及导轨的电阻不计)?7.(12分)如图所示,一矩形金属框架与水平面成=37°角,宽L=0.4m,上、下两端各有一个电阻R0=2Ω,框架的其他部分电阻不计,框架足够长,垂直于金属框平面的方向有一向上的匀强磁场,磁感应强度B=1.0T.ab为金属杆,与框架良好接触,其质量m=0.1Kg,杆电阻r=1.0Ω,杆与框架的动摩擦因数μ=0.5.杆由静止开始下滑,在速度达到最大的过程中,上端电阻R0产生的热量Q0=0.5J.(sin37°=0.6,cos37°=0.8)求:(1)流过R0的最大电流;(2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;(3)在时间1s内通过杆ab横截面积的最大电量.8.(14分)如图(A)所示,固定于水平桌面上的金属架cdef,处在一竖直向下的匀强磁场中,磁感强度的大小为B0,金属棒ab搁在框架上,可无摩擦地滑动,此时adeb构成一个边长为l的正方形,金属棒的电阻为r,其余部分的电阻不计。从t=0的时刻起,磁场开始均匀增加,磁感强度变化率的大小为k(k=ΔBΔt)。求:(1)用垂直于金属棒的水平拉力F使金属棒保持静止,写出F的大小随时间t变化的关系式。(2)如果竖直向下的磁场是非均匀增大的(即k不是常数),金属棒以速度v0向什么方向匀oRoRBababcdef图(A)以向左为运动的正方向图(B)t1tv0v0t2-v0以竖直向下为正方向图(C)t1tBt0B0t2-B0速运动时,可使金属棒中始终不产生感应电流,写出该磁感强度Bt随时间t变化的关系式。(3)如果非均匀变化磁场在0—t1时间内的方向竖直向下,在t1—t2时间内的方向竖直向上,若t=0时刻和t1时刻磁感强度的大小均为B0,且adeb的面积均为l2。当金属棒按图(B)中的规律运动时,为使金属棒中始终不产生感应电流,请在图(C)中示意地画出变化的磁场的磁感强度Bt随时间变化的图像(t1-t0=t2-t1lv)。9.一有界匀强磁场区域如图甲所示,质量为m、电阻为R的长方形矩形线圈abcd边长分别为L和2L,线圈一半在磁场内,一半在磁场外,磁感强度为B0。t=0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动,v-t图象如图乙,图中斜向虚线为过0点速度图线的切线,数据由图中给出,不考虑重力影响。求:⑴磁场磁感强度的变化率。⑵t3时刻回路电功率。10.(14分)如图所示,竖直向上的匀强磁场在初始时刻的磁感应强度B0=0.5T,并且以Bt=1T/s在增加,水平导轨的电阻和摩擦阻力均不计,导轨宽为0.5m,左端所接电阻R=0.4Ω。在导轨上l=1.0m处的右端搁一金属棒ab,其电阻R0=0.1Ω,并用水平细绳通过定滑轮吊着质量为M=2kg的重物,欲将重物吊起,问:(1)感应电流的方向(请将电流方向标在本题图上)以及感应电流的大小;(2)经过多长时间能吊起重物。L2LBabcd甲vtv00t1t2乙t3lRBab11.(14分)如图所示,边长L=2.5m、质量m=0.50kg的正方形金属线框,放在磁感应强度B=0.80T的匀强磁场中,它的一边与磁场的边界MN重合。在水平力作用下由静止开始向左运动,在5.0s内从磁场中拉出。测得金属线框中的电流随时间变化的图象如下图所示。已知金属线框的总电阻R=4.0Ω。⑴试判断金属线框被拉出的过程中,线框中的感应电流方向,并在图中标出。⑵求t=2.0s时金属线框的速度大小和水平外力的大小。⑶已知在5.0s内力F做功1.92J,那么金属线框从磁场拉出的过程中,线框中产生的焦耳热是多少?12、(16分)如图所示,倾角为370的光滑绝缘的斜面上放着M=1kg的导轨abcd,ab∥cd。另有一质量m=1kg的金属棒EF平行bc放在导轨上,EF下侧有绝缘的垂直于斜面的立柱P、S、Q挡住EF使之不下滑,以OO′为界,斜面左边有一垂直于斜面向下的匀强磁场。右边有平行于斜面向下的匀强磁场,两磁场的磁感应强度均为B=1T,导轨bc段长L=1m。金属棒EF的电阻R=1.2Ω,其余电阻不计,金属棒与导轨间的动摩擦因数μ=0.4,开始时导轨bc边用细线系在立柱S上,导轨和斜面足够长,当剪断细线后,试求:(1)求导轨abcd运动的最大加速度;(2)求导轨abcd运动的最大速度;(3)若导轨从开始运动到最大速度的过程中,流过金属棒EF的电量q=5C,则在此过程中,系统损失的机械能是多少?(sin370=0.6)OI/At/s1234560.60.50.40.30.20.1MNB13.(20分)如图所示,在磁感应强度为B的水平方向的匀强磁场中竖直放置两平行导轨,磁场方向与导轨所在平面垂直。导轨上端跨接一阻值为R的电阻(导轨电阻不计)。两金属棒a和b的电阻均为R,质量分别为kgma2102和kgmb2101,它们与导轨相连,并可沿导轨无摩擦滑动。闭合开关S,先固定b,用一恒力F向上拉,稳定后a以smv/101的速度匀速运动,此时再释放b,b恰好保持静止,设导轨足够长,取2/10smg。(1)求拉力F的大小;(2)若将金属棒a固定,让金属棒b自由滑下(开关仍闭合),求b滑行的最大速度2v;(3)若断开开关,将金属棒a和b都固定,使磁感应强度从B随时间均匀增加,经0.1s后磁感应强度增到2B时,a棒受到的安培力正好等于a棒的重力,求两金属棒间的距离h。14.(14分)如图甲所示是某人设计的一种振动发电装置,它的结构是一个套在辐向形永久磁铁槽中的半径为r=0.1m、匝数n=20的线圈,磁场的磁感线均沿半径方向均匀分布(其右视图如图乙所示)。在线圈所在位置磁感应强度B的大小均为0.2T,线圈的电阻为2Ω,它的引出线接有8Ω的小电珠L。外力推动线圈框架的P端,使线圈沿轴线做往复运动,便有电流通过电珠。当线圈向右的位移x随时间t变化的规律如图丙所示时(x取向右为正),求:(1)线圈运动时产生的感应电动势E的大小;(2)线圈运动时产生的感应电流I的大小,并在图丁中画出感应电流随时间变化的图像(在图甲中取电流由C向上流过电珠L到D为正);(3)每一次推动线圈运动过程中作用力F的大小;(4)该发电机的输出功率P(摩擦等损耗不计);(5)某同学说:“该线圈在运动过程中,磁感线始终与线0.60.40.220.120.320.52丁t/sI/A0x/cmt/s8.00.60.40.220.120.320.52丙4.00圈平面平行,线圈中的磁通量始终为零,磁通量保持不变,因此线圈中应该没有感应电流产生,但实际却产生了电流,如何解释这个问题呢?”对这个问题说说你的看法。15.(14分)如图所示,在一个磁感应强度为B的匀强磁场中,有一弯成45角的金属导轨,且导轨平面垂直磁场方向。导电棒MN以速度v从导轨的O点处开始无摩擦地匀速滑动,速度v的方向与Ox方向平行,导电棒与导轨单位长度的电阻为r。(1)写出t时刻感应电动势的表达式;(2)感应电流的大小如何?(3)写出在t时刻作用在导电棒MN上的外力瞬时功率的表达式。16、(12分)如图15所示,矩形裸导线框长边的长度为2l,短边的长度为l,在两个短边上均接有电阻R,其余部分电阻不计。导线框一长边与x轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的磁感应强度满足关系B=B0sin(lx2)。一光滑导体棒AB与短边平行且与长边接触良好,电阻也是R。开始时导体棒处于x=0处,从t=0时刻起,导体棒AB在沿x方向的力F作用下做速度为v的匀速运动,求:(1)导体棒AB从x=0到x=2l的过程中力F随时间t变化的规律;(2)导体棒AB从x=0到x=2l的过程中回路产生的热量。17.(12分)磁流体发电是一种新型发电方式,图(