离散型随机变量及其分布列练习题和答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高二理科数学测试题(9-28)1.每次试验的成功率为(01)pp,重复进行10次试验,其中前7次都未成功后3次都成功的概率为()()A33710(1)Cpp()B33310(1)Cpp()C37(1)pp()D73(1)pp2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()(A)0.648(B)0.432(C)0.36(D)0.3123.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为()()A23332()55C()B22332()()53C()C33432()()55C()D33421()()33C4.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为()A.2258B.21C.83D.435.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P(ξ≤1)等于().A.15B.25C.35D.456.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了次球,则)12(P()A.2101012)85()83(CB.83)85()83(29911CC.29911)83()85(CD.29911)85()83(C7.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为()A.53B.43C.21D.1038.6位同学参加百米短跑初赛,赛场有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率()A.52B.51C.92D.739.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的条件下第二张也是奇数的概率()A.52B.51C.21D.7310.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都是21,质点P移动5次后位于点(2,3)的概率是()A.3)21(B.525)21(CC.335)21(CD.53525)21(CC11.若样本数据1x,2x,,10x的标准差为8,则数据121x,221x,,1021x的标准差为()(A)8(B)15(C)16(D)3212.设某项试验的成功率是失败率的2倍,用随机变量描述一次试验的成功次数,则)0(P等于()A.0B.21C.31D.32解答题13.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率;⑵全部死亡的概率;⑶恰好成活3棵的概率;⑷至少成活4棵的概率14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.奎屯王新敞新疆15.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率;(2)求按比赛规则甲获胜的概率.16.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列.1--5:CAACD6-12:BABCBCC13.⑴5550.90.59049C;⑵5550.10.00001C;⑶3325530.90.10.0729PC;⑷55450.91854PPP14.解(1)∵X的可能取值为0,1,2,3,取相应值的概率分别为∴X的分布列为X0123P1971871819(2)∵得分η=5X+2(3-X)=6+3X,∵X的可能取值为0,1,2,3.∴η的可能取值为6,9,12,15,取相应值的概率分别为P(η=6)=P(X=0)=19,P(η=9)=P(X=1)=718,P(η=12)=P(X=2)=718,P(η=15)=P(X=3)=19.∴得分η的分布列为η691215P197187181915.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12.记事件A=“甲打完3局才能取胜”,记事件B=“甲打完4局才能取胜”,记事件C=“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28PAC.②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216PBC.③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负奎屯王新敞新疆奎屯王新敞新疆奎屯王新敞新疆∴甲打完5局才能取胜的概率为22241113()()()22216PCC.(2)事件D=“按比赛规则甲获胜”,则DABC,又因为事件A、B、C彼此互斥,故1331()()()()()816162PDPABCPAPBPC.16.(1):107

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功